В этом видео мы продемонстрирована высокая эффективность электромуфтовой клеток<em> В пробирке</em> С помощью модифицированного метода с помощью соблюдения электропорации и последующего обнаружения плавленого визуализации клеток с флуоресцентной микроскопии.
Сотовые электромуфтовой является безопасным, невирусных и нехимических методов, которые могут быть использованы для получения гибридных клеток для терапии человека. Электромуфтовая предполагает применение коротких высоковольтных электрических импульсов к клеткам, которые находятся в тесном контакте. Применение Короче говоря, высоковольтных импульсов электрических причин дестабилизации клеточных мембран плазмы. Дестабилизировали мембраны более проницаемыми для различных молекул, а также склонных к слиянию с любыми соседними дестабилизировали мембран. Электромуфтовая, таким образом, удобный способ для достижения неспецифические слияние очень разные клетки<em> В пробирке</em>. Для того чтобы получить сплав, клеточных мембран, дестабилизирована электрического поля, должны быть в тесном контакте, чтобы слияние их липидного бислоя и, следовательно, их цитоплазме. В этом видео, мы демонстрируем эффективное электромуфтовой клеток<em> В пробирке</em> С помощью модифицированного метода соблюдение. В этом методе, ячейки могут приложить лишь немного на поверхность хорошо, так, что среда может быть обменен и клеток по-прежнему сохраняют свою сферическую форму. Fusion визуализации оценивается по предварительной маркировке цитоплазме клеток с различными флуоресцентными красителями трекер клетки; половине клетки помечены оранжевым CMRA, а другая половина с зелеными CMFDA. Fusion доходность определяется как число двойственно флуоресцентные клетки разделены с числом всех клеток, умноженную на два.
Способность клеточных мембран к предохранитель неспецифически, например, с помощью внешнего электрического поля, имеет большое значение для биотехнологий, медицины и научных исследований в биологии. Такие неспецифические слияние позволяет получать весьма ценные гибридные клетки и их продукты, такие как моноклональные антитела, и предоставляет информацию о фундаментальных механизмов синтеза [2]. Электромуфтовая является потенциально очень эффективный метод, так как это может быть правильно отрегулирован для различных типов клеток. Электромуфтовая достигается тогда, когда клетки в тесном физическом контакте были приведены в их fusogenic состоянии (склонные к слиянию) с помощью высоковольтных электрических импульсов. Эффективность электромуфтовой зависит от различных параметров, которые влияют на две части электромуфтовой процесса. Первая часть электромуфтовой процесса является достижение близкий физический контакт между клетками, которые могут быть получены различными методами [3-8]. Соблюдение метод (растущих клеток до слияния) могут быть эффективно использованы из-за спонтанно создана ячейка контактов в крупных зонах между клетками, однако, он производит очень большое плавленого клетки с многочисленными ядрами. Мы с помощью модифицированного метода приверженности, где мелкие клетки (с 2 до 5 ядер), которые имеют больше шансов выжить и размножаться, получены (рис. 1). Контакт между клетками также извлечь выгоду из осмотическое набухание клеток, из-за осмотического лечение, используемое в эксперименте [9]. Вторая часть электромуфтовой процесс достижения fusogenic состояние клеточных мембран. Fusogenic состоянии хорошо коррелирует с electropermeabilized состояние мембраны (клетки неспецифически проницаемыми для молекул, которые обычно не могут пройти через неповрежденную мембрану) и управляется одними и теми же параметрами электрических импульсов (амплитуда, длина, количество и частота) [10] . Значения электрических параметров, необходимых для оптимального электропорации [1] и электромуфтовой отличаются между различными клетками и зависят от размера ячеек и их биологические свойства. Электрические параметры таким образом, должны быть оптимизированы для различных клеточных линий, которые используются как слияние партнеров, для получения синтез.
The authors have nothing to disclose.
Эта работа была поддержана словенского агентства исследований (проект J2-9764 и программу Р2-0249). Это видео представляет дополнительный материал для "Электропорация основе технологий и методов лечения" научно-практический семинар и аспирантуру, организованный факультет электротехники в университете Любляны, Словения.
Material Name | タイプ | Company | Catalogue Number | Comment |
---|---|---|---|---|
CMRA | Reagent | Invitrogen | C34551 | Cytosolic fluorescent dye |
CMFDA | Reagent | Invitrogen | C7025 | Cytosolic fluorescent dye |
DMSO | Reagent | Sigma-Aldrich | D2650 | |
DMEM | Reagent | Sigma-Aldrich | D5671 | Dulbecco’s modified Eagle’s medium |
Fetal calf serum | Reagent | Sigma-Aldrich | F4135 | |
L-glutamine | Reagent | Sigma-Aldrich | G7513 | |
crystacillin | Reagent | Pliva | 625110 | antibiotic |
gentamicin | Reagent | Sigma-Aldrich | G1397 | antibiotic |
Hepes | Reagent | Sigma-Aldrich | H0887 | |
KH2PO4 | Reagent | Merck | A124873 927 | |
KH2PO4 | Reagent | Sigma-Aldrich | 4248 | |
MgCl2 | Reagent | Sigma-Aldrich | M-8266 | |
NaCl | Reagent | Fluka | 71382 | |
KCl | Reagent | Merck | A154336 908 | |
MgSO4 | Reagent | Sigma-Aldrich | M2643 | |
D-glucose | Reagent | Sigma-Aldrich | G8270 | |
CaCl2 | Reagent | Sigma-Aldrich | C4901 | |
sucrose | Reagent | Sigma-Aldrich | 16104 | |
Electric pulse generator | Tool | Igea | Cliniporator VITAE | |
Multiwell plate | Tool | TPP | 92424 | |
50 ml centrifuge tube | Tool | TPP | 91050 | |
15 ml centrifuge tube | Tool | TPP | 91015 | |
25 cm2 culture flask | Tool | TPP | 90026 | |
Electrodes | Tool | Custom made | Pt/Ir |