In this video we demonstrate efficient electrofusion of cells in vitro by means of modified adherence method using electroporation and the subsequent detection of fused cells visualization with fluorescence microscopy.
I. Loading the cells with Cell trackers CMFDA and CMRA
II. Electrofusion
III. Image acquisition and determination of the fusion yield
Representative Results
Figure 1. Three channel microscopy image of B16F1 cells after electrofusion: phase contrast, CMRA fluorescence (excitation at 548 nm) and CMFDA fluorescence (excitation at 492 nm), objective magnification 20x
The ability of cell membranes to fuse non-specifically, e.g., by external electric fields, is important for biotechnology, medicine and research in biology. Such nonspecific fusion enables production of highly valuable hybrid cells and their products, such as monoclonal antibodies, and provides information about fundamental mechanisms of fusion [2]. Electrofusion is a potentially very effective method since it can be properly adjusted to different types of cells. Electrofusion is achieved when cells in close physical contact are brought into their fusogenic state (prone to fusion) by means of high-voltage electric pulses. The efficiency of electrofusion depends on various parameters that affect two parts of the electrofusion process. First part of the electrofusion process is achievement of the close physical contact between cells, which can be obtained with different methods [3-8]. Adherence method (growing cells to confluence) can be used efficiently due to spontaneously established cell contacts in large zones between cells; however, it produces very large fused cells with many nuclei. We are using the modified adherence method, where smaller cells (with 2 to 5 nuclei), which are more likely to survive and proliferate, are obtained (Figure 1). Contact between cells also benefit from osmotic swelling of cells, due to osmotic treatment used in the experiment [9]. Second part of the electrofusion process is the achievement of the fusogenic state of the cell membranes. Fusogenic state correlates well with electropermeabilized state of the membrane (cells are non-specifically permeabilized to molecules that normally cannot pass through intact membrane) and is governed by the same parameters of the electric pulses (amplitude, length, number and frequency) [10]. The values of electrical parameters needed for optimal electroporation [1] and electrofusion differ between different cells and depend on cells size and their biological properties. Electrical parameters thus need to be optimized for different cell lines, which are used as fusion partners, to obtain fusion.
The authors have nothing to disclose.
This work was supported by the Slovenian Research Agency (project J2-9764 and programme P2-0249). This video represents supplementary material for the “Electroporation-based Technologies and Treatments” scientific workshop and postgraduate course, organized by the Faculty of Electrical Engineering at the University of Ljubljana, Slovenia.
Material Name | Tipo | Company | Catalogue Number | Comment |
---|---|---|---|---|
CMRA | Reagent | Invitrogen | C34551 | Cytosolic fluorescent dye |
CMFDA | Reagent | Invitrogen | C7025 | Cytosolic fluorescent dye |
DMSO | Reagent | Sigma-Aldrich | D2650 | |
DMEM | Reagent | Sigma-Aldrich | D5671 | Dulbecco’s modified Eagle’s medium |
Fetal calf serum | Reagent | Sigma-Aldrich | F4135 | |
L-glutamine | Reagent | Sigma-Aldrich | G7513 | |
crystacillin | Reagent | Pliva | 625110 | antibiotic |
gentamicin | Reagent | Sigma-Aldrich | G1397 | antibiotic |
Hepes | Reagent | Sigma-Aldrich | H0887 | |
KH2PO4 | Reagent | Merck | A124873 927 | |
KH2PO4 | Reagent | Sigma-Aldrich | 4248 | |
MgCl2 | Reagent | Sigma-Aldrich | M-8266 | |
NaCl | Reagent | Fluka | 71382 | |
KCl | Reagent | Merck | A154336 908 | |
MgSO4 | Reagent | Sigma-Aldrich | M2643 | |
D-glucose | Reagent | Sigma-Aldrich | G8270 | |
CaCl2 | Reagent | Sigma-Aldrich | C4901 | |
sucrose | Reagent | Sigma-Aldrich | 16104 | |
Electric pulse generator | Tool | Igea | Cliniporator VITAE | |
Multiwell plate | Tool | TPP | 92424 | |
50 ml centrifuge tube | Tool | TPP | 91050 | |
15 ml centrifuge tube | Tool | TPP | 91015 | |
25 cm2 culture flask | Tool | TPP | 90026 | |
Electrodes | Tool | Custom made | Pt/Ir |