Science Education
>

In vitro Modeling for Neurological Diseases using Direct Conversion from Fibroblasts to Neuronal Progenitor Cells and Differentiation into Astrocytes

PREPARAZIONE ISTRUTTORI
CONCETTI
Student Protocol
JoVE Journal
Neuroscienze
Author Produced
This content is Free Access.
JoVE Journal Neuroscienze
In vitro Modeling for Neurological Diseases using Direct Conversion from Fibroblasts to Neuronal Progenitor Cells and Differentiation into Astrocytes
Media Reagent Amount to mix Final concentration (%)
Fibroblast media DMEM, high glucose, GlutaMAX 500 mL 89
Fetal Bovine Serum 50 mL 10
Antibiotic-Antimycotic 5 mL 1
Base media DMEM/F12 + Glutamax 500 mL 97
N-2 5 mL 1
B-27 5 mL 1
Antibiotic-Antimycotic 5 mL 1
Conversion media Base media 50 mL 99.9
FGF 1 µL 0.02 (20 ng/mL)
EGF 1 µL 0.02 (20 ng/mL)
Heparin 50 µL 0.1 (5 µg/mL)
Neural Progenitor Cell (NPC) Media DMEM/F12 + Glutamax 500 mL 96.9
N-2 5 mL 1
B-27 5 mL 1
Antibiotic-Antimycotic 5 mL 1
FGF 10 uL 0.002
Astrocyte Media DMEM, high glucose, GlutaMAX 500 mL 89
Fetal Bovine Serum 50 mL 10
Antibiotic-Antimycotic 5 mL 1
N-2 1 mL 0.2
Media must be filtered after mixing all components. Conversion media (with factors) must be prepared fresh every week. 

Table 1. Media recipes for all cell types included in the protocol. Media should be filtered after mixing all components with either a sterile vacuum filtration system for big volumes or syringe and 0.2 um syringe filters. Conversion media (with factors) must be prepared fresh every week.

1. Direct conversion of adult human fibroblasts to neuronal progenitor cells

NOTE: A schematic timeline of this protocol can be reviewed in Meyer (2014)19.

  1. Use primary human skin fibroblasts that can be obtained from cell banks or skin biopsies31. Culture cells at 37 °C in a 5% CO2 tissue culture incubator. Passage cells for at least 1-2 passages post thawing prior to use in the experiment. Once the cells are ready, coat a well of a 6-well plate with human fibronectin (1:200 diluted in PBS) at room temperature for 15-20 min.
  2. When the cells are ready to be plated, remove the fibronectin from the dish and immediately add cell solution or 2 mL of fibroblast media (Table 1) – do not let the dish dry out prior to adding media. Depending on how fast the cells grow, plate 150,000 (fast growing) – 200,000 (slow growing) fibroblasts in two wells of a human fibronectin coated 6-well plate each.
    NOTE: The cells should be around 70% confluent for viral transduction to be able to keep them in the same plate for several more days after transduction. It can be beneficial to seed at two different densities in order to have a choice the next day for conversion.
  3. The day after seeding, check the fibroblasts under the microscope and verify cell density (between 70-85%) and even seeding throughout the well for optimal results.
  4. Transduce one well with all four retroviral vectors (Oct3/4, Klf4, Sox2 and c-Myc) – use a multiplicity of infection (MOI) of 10 for fast growing or 15 for slow growing fibroblasts (transduction efficiency should exceed 70% or more positive cells for each vector). Add regular fibroblast medium to viral mix to a total volume of 1 mL per well and incubate overnight at 37 °C in a 5% CO2 tissue culture incubator. Leave the second well untreated and return cells to tissue culture incubator.
    NOTE: Retroviral vectors can be purchased by a vendor or made in-house, protocols are available online32.
  5. The day after transduction, wash cells 1x with PBS and add 1 mL of fresh fibroblast medium.
  6. The next day, change medium to conversion medium. Wash cells 1x with PBS to get rid of the residual fibroblast medium, and then add 1 mL of conversion medium. Change the media of the untreated well to conversion media as well.
    NOTE: Some morphological changes can be observed even by changing the media on the fibroblasts that did not receive retroviral vector treatment, thus having an untreated well (optional) will be helpful when determining effects of the viral vectors. Cells should start changing morphology 2-4 days after switching to conversion media.
  7. Observe cells under the microscope and watch for changes in morphology (Figure 1). Cell media should be replaced daily throughout the conversion process (1-2 mL of conversion media, Table 1) and for subsequent iNPC culture. Change medium by carefully removing 70% of medium from the well while making sure that the cells remain covered in the remaining 30% of media.
    NOTE: Media with growth factors in it needs to be consumed within 1 week of preparation.
    1. Continue to observe cells and change media daily (1-2 mL of conversion media).
    2. Some cell lines start forming loose elevated round formations growing in ball like structures or loose neuronal spheres (Supplemental Figure 1 and 19,33). Take care to not detach these cells. If the balls detach, they can be collected and re-plated in a new fibronectin coated well of a 6-well plate.
      NOTE: If they are expanded on their own, the cells will have reduced diversity compared to the initial plate and may represent a distinctly different cell line. We recommend combining these cells with the rest of the converted cells at the next round of splitting.
  8. After about 5-6 days in conversion media (up to 12 days for difficult cell lines) or when cells become very dense, passage them 1:2 or maximum 1:3.
    ​NOTE: It is very important to keep the cells at a high density throughout the conversion process.

2. Conversion and iNPC splitting procedure

  1. Warm up cell detachment solution (e.g., Accutase) and coat an appropriate number of wells of a 6-well with fibronectin (1:200 in PBS, 1 mL of coating volume) for 15-20 min at room temperature. Fibronectin coating can be longer without negative impact, but care should be taken to not shorten the coating time.
  2. Wash cells carefully with PBS without detaching any cells (use the wall of the well to apply PBS gently to the cells). Carefully remove PBS with pipettes or by aspiration.
  3. Add 0.5 mL of cell detachment solution and incubate 2-3 min at 37 °C in a tissue culture incubator. Check under the microscope to verify that most cells have detached. If all cells have come off, add 2 mL of fresh conversion media and gently pipette up and down 2-3 times to dissociate clumps (if required).
  4. Collect the cells in a 15 mL tube and add additional 3 mL of media to further dilute the cell detachment solution. Wash the well with the extra media first to ensure all cells have been collected.
  5. Centrifuge for 4 min at 200 x g at room temperature.
    NOTE: Converting cells or iNPCs are extremely sensitive to the presence of cell detachment solution in the media. It is absolutely necessary to remove the residual enzyme by centrifugation and withdrawal of supernatant.
  6. Remove supernatant from cell pellet and resuspend the cells in 1 mL of fresh medium. Gently pipette up and down 2-3 times to resolve cell clumps. Remove fibronectin from coated 6-wells and add 1 mL of fresh media to each well immediately (do not let fibronectin dry). For a split ratio of 1:2, add 0.5 mL of the cell suspension in one well and the other 0.5 mL in a second well.
    1. Culture cells at 37 °C in a tissue culture incubator.
  7. Distribute the cells by gently shaking the 6-well in north-south-east-west direction (not circular) and put in tissue culture incubator.
  8. Observe the cells under the microscope the next day and change media (1-2 mL). Change media every day until the cells are ready to be split again.
    NOTE: At this point, the cell proliferation should start to accelerate, and cells should be ready for a second split within 2-3 days (4 days for very slow growing lines).
    1. At this new split, seed one well of cells in conversion media and the other well in NPC media containing only FGF at increased concentration without EGF/heparin (Table 1).
      NOTE: Some cell lines reach a stagnant state in conversion media after about 10 days and switching to NPC media might help with cell growth. In addition, NPCs have a more specific, smaller shape, when grown in NPC media19. At this point, the iNPCs are ready for differentiation and further use.
  9. Keep changing media (1-2 mL) of the iNPCs daily.
    1. Expand NPCs into 10 cm dishes by combining two or three confluent wells of a 6-well. The media volume for 10 cm dishes is typically 12-15 mL.
    2. At the next split, further expand these cells to three or four 10 cm dishes (12-15 mL of media) for generations of large numbers of cell stocks. 10 cm dishes are usually split at 1:3 or 1:4 every 3-4 days depending on proliferation rate.

3. Generating induced astrocytes from NPCs

  1. To make astrocytes from fresh iNPCs, seed iNPCs (in 10 cm fibronectin coated plates) directly in 10 mL astrocyte medium (Table 1) so that they are around 10% confluency the following day. Culture cells at 37 °C in a 5% CO2 tissue culture incubator.
    NOTE: The recommended seeding density is usually 50 µL of the cell resuspension of a 10 cm dish of NPCs, provided they are diluted to a final volume based on their split ratio (e.g., 3 mL for a 1:3 split, 4 mL for a 1:4 split, etc.).
  2. Change medium (10 mL astrocyte media) of the iAs three days after plating. Keep the cells differentiating for 5-7 days.
    NOTE: iAs do not tolerate multiple passages well, therefore it is better to make fresh astrocytes every time you split the NPCs.
  3. To seed for experimentation, split the astrocytes using trypsin or cell detachment solution as described in steps 2.1-2.7. Recommended seeding densities are included in Table 2.
Plate Type Astrocytes per Well
384-well 2500
96-well 10000
24-well 40000
6-well 150000

Table 2. Recommended seeding density of iAs per plate area. Typical number of iAs seeded to generate a monolayer on the most common tissue culture plates.

4. Preparing and defrosting portions for astrocyte differentiation from frozen NPC stocks (alternative to step 3)

NOTE: As an alternative to maintaining iNPCs in culture, astrocytes can also be produced directly from a frozen stock. To do so, the iNPCs are frozen in smaller portions. Table 3 shows suggested freezing and thawing volumes for portions to be defrosted into a 10 cm dish containing 10 mL of Astrocyte media.

Portion Size Cell Suspension (µL) Freezing media (µL) Total volume (µL) Defrosts Into
4x 400 400 800 Two 10-cm dishes
2x 200 200 400 One 10-cm dish

Table 3. Instructions on how to portion iNPC to generate iAs. Proportion of iNPC suspension and freezing media to generate portions. Note that the final DMSO concentration is 10% when cell suspension is mixed with freezing media.

  1. To make astrocytes from frozen iNPC stocks, remove portion stock vial from liquid nitrogen storage tank and quickly thaw at 37 °C. As soon as cells are defrosted, pipette cell solution in a 15 mL tube containing 5 mL astrocyte media.
  2. Centrifuge for 4 min at 200 x g and room temperature. Remove the supernatant and resuspend in 1 mL of fresh astrocyte medium.
  3. Add 9 mL of fresh astrocyte medium to a fibronectin coated 10 cm dish and add 1 mL of cell solution. Gently distributing cells in north-south-east-west motion. Culture cells at 37 °C in a 5% CO2 tissue culture incubator.

In vitro Modeling for Neurological Diseases using Direct Conversion from Fibroblasts to Neuronal Progenitor Cells and Differentiation into Astrocytes

Learning Objectives

This protocol allows the rapid and easy generation of iNPCs directly from human skin fibroblasts using retroviruses containing the Yamanaka factors. This method allows bypassing the stem cell state and the need for clonal selection, thereby avoiding clonal variation. Important steps to keep in mind while cells are undergoing the conversion process are the fibroblast seeding density, media pH and keeping the cells at an optimal confluency. Examples of optimal splitting confluency and morphology changes during the conversion process can be found in Figure 1.

Figure 1
Figure 1. Representative images of the conversion process after adding the retroviral mix of Yamanaka factors. Fibroblasts were seeded and transduced twenty-four hours later with Yamanaka factors. Two days post virus (DPV), media was changed to conversion media. Cells were cultured in conversion media until they were ready to passage (13 DPV). Cells were seeded post passage to reach 80% confluence the following day (14 DPV). Subsequent passages maintained this density until neuronal progenitor cells begin rapidly dividing. Scale bar is 200 µm. Please click here to view a larger version of this figure.

After the conversion process is complete, the NPCs will show strongly reduced expression or no expression of fibroblast markers and morphology, and express NPC specific cell markers (Figure 2). Moreover, they can also be used for generating different cell lines, like iNs, iOs, and iAs.

Figure 2
Figure 2. Cells that undergo the conversion process express cell-specific markers. Patient fibroblasts (A), induced Neuronal Progenitor Cells (iNPCs (B) and induced Astrocytes (iAs (C) cells were seeded on glass coverslips in a 24 well tissue culture treated plate. Cells were immunostained for: fibroblast specific cell markers (A), Vimentin (green) and TE7 (red), iNPC specific cell marker (B), Nestin (red), and iAs cell marker (C) GFAP (purple) and iNPC marker Nestin (green). Scale bar is 50 µm. Please click here to view a larger version of this figure.

In our experience, iAs in particular are very valuable for drug and disease mechanism testing as they can be generated in pure populations (98% or more GFAP positive cells29) at reproducible large numbers. iAs can be differentiated from iNPCs by taking a small aliquot of cells during splitting or a previously frozen iNPC portion and directly plating in astrocyte media. Important considerations during this process are maintaining the iNPCs initial seeding density low (Figure 3 and Figure 4), as a high density has been shown to hinder the differentiation process (Figure 4) and paying additional attention to the media pH, as acidification can activate even healthy astrocytes.

Figure 3
Figure 3. Representative images of the iAs generation process from iNPCs. iNPCs are seeded in Astrocyte media (Table 1) at a low seeding density. A good seeding density is about 10% on the first day post seeding (DPS) (left); however, this density can be adjusted according to the growth rate of cells. Typical iAs morphology can be observed after 5 DPS (middle). In some cases, aberrant astrocyte morphology can be observed, with long, spiky extensions. This change is indicative of astrocyte activation and can be secondary to disease state or incorrect culturing techniques (right). Scale bar is 200 µm. Please click here to view a larger version of this figure.

Figure 4
Figure 4. iNPC seeding density affects the iAs differentiation efficiency. Control iNPC lines were seeded at low (A) and high (B) density in Astrocyte media to demonstrate effects of seeding density on differentiation. 5 DPS, the low-density line expressed astrocyte-specific markers, while the high-density line shows a mixture of iNPC and iAs markers with a marked iNPC-like morphology. Scale bar is 50 µm. Please click here to view a larger version of this figure.

Supplemental Figure 1. Additional figures of the conversion process after adding the retroviral mix of Yamanaka factors. Images of the conversion process at 12 DPV (1 day before passage) and 19 DPV (6 days after passage). Note the difference on morphology between cells before and after passage, at 12 DPV cells have a ball-like structure morphology. After a passage and several days on conversion media (table 1) cells start displaying a NPC-like morphology. Scale bar is 200 µm. Please click here to download this File.

List of Materials

100mm x 2mm Style dish, Cell culture treated, Nonpyrogenic Corning 430167 Tissue culture
15 ml conical screw cap centrifuge tubes, copolymer polypropylene USA Scientific 1475-1611 Used for lifting and centrifuge cells
50mL Conical Centrifuge Tubes USA Scientific 1500-1811 Media preparation
Antibiotic-Antimycotic (100X) Gibco 15240062 Antibiotic with antifungal activity for media preparation
B-27  Supplement (50X), serum free Invitrogen 17504044 For NPC and base media
Cryogenic vials  1.2ML Corning CLS430658-500EA For freezing cell stocks
DMEM, high glucose, GlutaMAX  Supplement, pyruvate Gibco 10569010 For fibroblast and Astrocyte media
DMEM/F-12, GlutaMAX  supplement Gibco 10565042 For NPC and base media
DMSO Sigma D2438-50ML For freezing cell stocks
Dulbecco’s Phosphate Buffered Saline (PBS) Gibco 14190136 Referred in protocol as PBS. For fibronectin dilution and cell wash
EZ Retrovirus iPSC Reprogramming Kit ALSTEM RF101 Retrovirus containing the Yamanaka factors. Virus can also be made in-house.
Fetal Bovine Serum, certified Gibco 16000-036 Referred in protocol as FBS . For Fibroblast and Astrocyte media
Fisherbrand Sterile Syringes for Single Use Fisher 14-955-461 Filter media (50mL)
Heparin sodium salt from porcine intestinal mucosa Sigma H3149-10KU Referred in protocol as Heparin. Used in conversion media. Powder diluted in ultrapure water. Final stock concentration of 5000X
Human Plasma Fibronectin Purified Protein Millipore Sigma FC010-10MG Referred in protocol as Fibronectin, used in 1:200 dilution for coating.
Isopropanol (technical grade) Fisher Scientific S25372A For freezing cell stocks
Mr. Frosty Thermo Fisher 5100-0001 For freezing cell stocks
N-2 Supplement (100X) Gibco 17502048 For Astrocyte, NPC and base media
Recombinant Human EGF Preprotech AF-100-15 Referred in protocol as EGF, used in conversion media. Powder diluted in PBS, final concentration of 1mg/mL, stored in small frozen aliquots
Recombinant Human FGF-basic Preprotech 100-18B Referred in protocol as FGF, used in NPC and conversion media. Powder diluted in PBS, final concentration of 1mg/mL, stored in small frozen aliquots
StemPro Accutase Cell Dissociation Reagent Gibco A1110501 Referred in protocol as Accutase. Used for lifting during the conversion process and NPCs.
Stericup Quick Release-GP Sterile Vacuum Filtration System Millipore Sigma S2GPU05RE Media filtration
Tissue culture plate, 6 well, Flat bottom with Low evaporation lid Fisher 08-772-1B Tissue culture
Trypsin-EDTA (0.05%), phenol red Invitrogen 25300062 Lifting of Fibroblasts and Astrocytes
Whatman Puradisc 25 syringe filters, 0.2 μm, PES sterile Millipore Sigma 80-2502 Filter media (50mL)

Lab Prep

Research on neurological disorders focuses primarily on the impact of neurons on disease mechanisms. Limited availability of animal models severely impacts the study of cell type specific contributions to disease. Moreover, animal models usually do not reflect variability in mutations and disease courses seen in human patients. Reprogramming methods for generation of induced pluripotent stem cells (iPSCs) have revolutionized patient specific research and created valuable tools for studying disease mechanisms. However, iPSC technology has disadvantages such as time, labor commitment, clonal selectivity and loss of epigenetic markers. Recent modifications of these methods allow more direct generation of cell lineages or specific cell types, bypassing clonal isolation or a pluripotent stem cell state. We have developed a rapid direct conversion method to generate induced Neuronal Progenitor Cells (iNPCs) from skin fibroblasts utilizing retroviral vectors in combination with neuralizing media. The iNPCs can be differentiated into neurons (iNs) oligodendrocytes (iOs) and astrocytes (iAs). iAs production facilitates rapid drug and disease mechanism testing as differentiation from iNPCs only takes 5 days. Moreover, iAs are easy to work with and are generated in pure populations at large numbers. We developed a highly reproducible co-culture assay using mouse GFP+ neurons and patient derived iAs to evaluate potential therapeutic strategies for numerous neurological and neurodegenerative disorders. Importantly, the iA assays are scalable to 384-well format facilitating the evaluation of multiple small molecules in one plate. This approach allows simultaneous therapeutic evaluation of multiple patient cell lines with diverse genetic background. Easy production and storage of iAs and capacity to screen multiple compounds in one assay renders this methodology adaptable for personalized medicine.

Research on neurological disorders focuses primarily on the impact of neurons on disease mechanisms. Limited availability of animal models severely impacts the study of cell type specific contributions to disease. Moreover, animal models usually do not reflect variability in mutations and disease courses seen in human patients. Reprogramming methods for generation of induced pluripotent stem cells (iPSCs) have revolutionized patient specific research and created valuable tools for studying disease mechanisms. However, iPSC technology has disadvantages such as time, labor commitment, clonal selectivity and loss of epigenetic markers. Recent modifications of these methods allow more direct generation of cell lineages or specific cell types, bypassing clonal isolation or a pluripotent stem cell state. We have developed a rapid direct conversion method to generate induced Neuronal Progenitor Cells (iNPCs) from skin fibroblasts utilizing retroviral vectors in combination with neuralizing media. The iNPCs can be differentiated into neurons (iNs) oligodendrocytes (iOs) and astrocytes (iAs). iAs production facilitates rapid drug and disease mechanism testing as differentiation from iNPCs only takes 5 days. Moreover, iAs are easy to work with and are generated in pure populations at large numbers. We developed a highly reproducible co-culture assay using mouse GFP+ neurons and patient derived iAs to evaluate potential therapeutic strategies for numerous neurological and neurodegenerative disorders. Importantly, the iA assays are scalable to 384-well format facilitating the evaluation of multiple small molecules in one plate. This approach allows simultaneous therapeutic evaluation of multiple patient cell lines with diverse genetic background. Easy production and storage of iAs and capacity to screen multiple compounds in one assay renders this methodology adaptable for personalized medicine.

Procedura

Research on neurological disorders focuses primarily on the impact of neurons on disease mechanisms. Limited availability of animal models severely impacts the study of cell type specific contributions to disease. Moreover, animal models usually do not reflect variability in mutations and disease courses seen in human patients. Reprogramming methods for generation of induced pluripotent stem cells (iPSCs) have revolutionized patient specific research and created valuable tools for studying disease mechanisms. However, iPSC technology has disadvantages such as time, labor commitment, clonal selectivity and loss of epigenetic markers. Recent modifications of these methods allow more direct generation of cell lineages or specific cell types, bypassing clonal isolation or a pluripotent stem cell state. We have developed a rapid direct conversion method to generate induced Neuronal Progenitor Cells (iNPCs) from skin fibroblasts utilizing retroviral vectors in combination with neuralizing media. The iNPCs can be differentiated into neurons (iNs) oligodendrocytes (iOs) and astrocytes (iAs). iAs production facilitates rapid drug and disease mechanism testing as differentiation from iNPCs only takes 5 days. Moreover, iAs are easy to work with and are generated in pure populations at large numbers. We developed a highly reproducible co-culture assay using mouse GFP+ neurons and patient derived iAs to evaluate potential therapeutic strategies for numerous neurological and neurodegenerative disorders. Importantly, the iA assays are scalable to 384-well format facilitating the evaluation of multiple small molecules in one plate. This approach allows simultaneous therapeutic evaluation of multiple patient cell lines with diverse genetic background. Easy production and storage of iAs and capacity to screen multiple compounds in one assay renders this methodology adaptable for personalized medicine.

Tags