Intrinsisch ungeordnete Regionen (IDRs) sind flexible Proteindomänen, die ihre Konformation als Reaktion auf Umweltveränderungen verändern. Der Ensemble-Fluoreszenz-Resonanz-Energietransfer (FRET) kann Proteindimensionen unter verschiedenen Bedingungen abschätzen. Wir präsentieren einen FRET-Ansatz zur Bewertung der strukturellen IDR-Sensitivität in lebenden Saccharomyces cerevisiae-Zellen unter hyperosmotischem Stress.
Intrinsisch ungeordnete Regionen (IDRs) sind Proteindomänen, die an entscheidenden zellulären Prozessen beteiligt sind. Unter Stressbedingungen ändern sich die physikalisch-chemischen Eigenschaften der zellulären Umgebung, was sich direkt auf das Konformationsensemble der IDRs auswirkt. IDRs reagieren von Natur aus empfindlich auf Umweltstörungen. Die Untersuchung, wie die physikalisch-chemischen Eigenschaften der Zelle das Konformationsensemble von IDRs regulieren, ist für das Verständnis der Umweltkontrolle ihrer Funktion unerlässlich. Hier beschreiben wir eine schrittweise Methode zur Messung der strukturellen Sensitivität von IDRs in lebenden Saccharomyces cerevisiae-Zellen als Reaktion auf hyperosmotische Stressbedingungen. Wir stellen die Verwendung des Ensemble-Fluoreszenz-Resonanz-Energietransfers (FRET) vor, um abzuschätzen, wie sich die globalen Dimensionen von IDRs während eines fortschreitenden Anstiegs des hyperosmotischen Stresses ändern, der Zellen mit einem beliebigen Osmolyten auferlegt wird. Darüber hinaus stellen wir ein Skript zur Verarbeitung von Fluoreszenzmessungen und zum Vergleich der strukturellen Empfindlichkeit für verschiedene IDRs zur Verfügung. Durch diese Methode können Forscher wertvolle Einblicke in die Konformationsänderungen gewinnen, die IDRs im komplexen intrazellulären Milieu bei wechselnden Umgebungen erfahren.
Intrinsisch ungeordnete Regionen (IDRs) sind kritische Komponenten in zellulären Prozessen1. In Kombination mit strukturierten Domänen sind IDRs essentiell für Proteinfunktionen. Die Aminosäurezusammensetzung von IDRs ist verzerrt und wird hauptsächlich durch geladene, hydrophile und kleine Reste dargestellt. Aufgrund dieser Eigenschaft werden IDRs als Domänen mit geringer Komplexität betrachtet 2,3. Zahlreiche IDRs haben Aufmerksamkeit erregt, vor allem, weil diese Regionen eine entscheidende Rolle bei pathologischen Zuständen spielen, insbesondere bei neurodegenerativen Erkrankungen. Solche Krankheiten sind durch Selbstorganisation und anschließende extrazelluläre oder intrazelluläre Ablagerung von IDRs in Neuronen gekennzeichnet4. Beispiele für solche IDRs sind Amyloid-β (Aβ) bei der Alzheimer-Krankheit, Huntingtin (HTT) bei der Huntington-Krankheit und das TAR-DNA-bindende Protein-43 (TDP-43) und fusioniert im Sarkom (FUS) bei amyotropher Lateralsklerose und frontotemporaler Demenz4. Die Untersuchung der strukturellen Umlagerungen von IDRs im Zusammenhang mit Krankheiten wurde durch spektroskopische Methoden, einschließlich des Fluoreszenz-Resonanz-Energietransfers (FRET), erheblich verbessert.
Die hydrophile und erweiterte Natur von IDRs macht sie extrem empfindlich gegenüber Änderungen der physikalisch-chemischen Eigenschaften der Lösungsumgebung5. Der Grad, in dem das Konformationsensemble von IDRs durch die Umwelt modifiziert wird, wird als strukturelle Sensitivität bezeichnet 5,6,7. Zur Untersuchung der Konformation und Dynamik von IDRs können verschiedene Techniken verwendet werden, darunter Zirkulardichroismus (CD) und Röntgenkleinwinkelstreuung (SAXS)8,9. Leider benötigen CD und SAXS große Mengen an gereinigten Proteinen, so dass sie für Studien in Zellen nicht geeignet sind. Im Gegensatz dazu ist FRET eine Technik, die die Fluoreszenzintensität von zwei fluoreszierenden Molekülen misst, die spezifisch eine IDR markieren, was bedeutet, dass sie in komplexen Gemischen wie lebenden Zellen überwacht werden können10. Die dynamische Messung der strukturellen Empfindlichkeit von IDRs in lebenden Zellen ist notwendig, um zu verstehen, wie die Umgebung die Konformation und Funktion des ungeordneten Proteoms reguliert.
FRET ist eine leistungsstarke Methode zur Quantifizierung der strukturellen Empfindlichkeit von IDRs sowie von globulären und Multidomänenproteinen in lebenden Zellen. Die Methode erfordert ein Konstrukt, das aus einem IDR von Interesse besteht, der zwischen zwei fluoreszierenden Proteinen (FP) eingebettet ist, einem sogenannten FRET-Paar. Für dieses Protokoll empfehlen wir die Verwendung von mCerulean3 als Spender-FP und Citrin als Akzeptor-FP aufgrund ihres großen Dynamikbereichs im Vergleich zu anderen FPs, die in einer früheren Studie über die Sensitivität von IDRs berichtet wurden6. FRET wurde zuvor genutzt, um die strukturelle Empfindlichkeit einer pflanzlichen IDR in verschiedenen zellulären Kontexten zu messen6. Darüber hinaus wurde diese Technik verwendet, um die Gesamtproteindimensionen von IDRs von verschiedenen Forschungsgruppen sowohl in vitro als auch in vivo zu charakterisieren 5,11.
Hier beschreiben wir die Ensemble-FRET-Methode zur Untersuchung der strukturellen Empfindlichkeit von IDRs in lebenden Hefezellen (Saccharomyces cerevisiae). Wir zeigen repräsentative Ergebnisse, die auf einer Pflanzen-IDR namens AtLEA4-5 basieren. AtLEA4-5 ist in Lösung ungeordnet, faltet sich aber zu α-Helix, wenn in vitro makromolekulares Crowding induziert wird 12. AtLEA4-5 ist ein gutes Referenzmodell für diese Methode, da es relativ klein (158 Rückstände), ungeordnet und empfindlich gegenüber Umweltstörungen ist, wie in silico und in vitro berichtet 6,12. Die hier vorgestellte Methode kann für Hochdurchsatzansätze skaliert werden, da Hefezellen leicht zu züchten sind und die Behandlung in kleinen Volumina angewendet wird. Darüber hinaus können kleine Modifikationen des Protokolls auf andere zelluläre Systeme wie Bakterien und Pflanzenzellen angewendet werden6. Das Protokoll kann in jedem molekularbiologischen Labor durchgeführt werden, das Zugang zu einem Mikroplatten-Reader mit Fluoreszenzmodus hat, ein Gerät, das in den meisten Forschungseinrichtungen verfügbar ist.
Die hier vorgestellte Methode bietet eine Möglichkeit, Einblicke zu gewinnen, wie die globalen Dimensionen des Ensembles von IDRs Umweltstörungen wahrnehmen und darauf reagieren. Diese Methode beruht auf einem genetisch kodierten Konstrukt und benötigt keine zusätzlichen Komponenten außer einer plasmidstabilen Expression in Hefezellen, wodurch sie für potenzielle Anwendungen in anderen Zelltypen angepasst werden kann. Darüber hinaus ist es vielseitig einsetzbar, um andere physikalisch-chemische Störungen zu erfor…
The authors have nothing to disclose.
Wir danken den Mitgliedern des Cuevas-Velazquez-Labors für die kritische Überprüfung des Manuskripts. Diese Arbeit wurde unterstützt durch das Programa de Apoyo a Proyectos de Investigación e Innovación Tecnológica, die Dirección General de Asuntos del Personal Académico, die Universidad Nacional Autónoma de México (UNAM-PAPIIT) Projektnummer IA203422; Consejo Nacional de Humanidades, Ciencias y Tecnología (CONAHCYT), Projektnummer 252952; und Programa de Apoyo a la Investigación y el Posgrado, Facultad de Química, Universidad Nacional Autónoma de México, Grant 5000-9182. CET (CVU 1083636) und CAPD (CVU 1269643) würdigen CONAHCYT für ihr M.Sc-Stipendium.
96-well plate | Greiner Bio-One | 655096 | |
Agar | Sigma-Aldrich | 5040 | |
BglII | New England BioLabs | R0144S | |
BJ5465 cells | American Type Culture Collection | 208289 | |
Buffer MES 50 mM | Sigma-Aldrich | M8250 | |
Buffer Tris-HCl 10 mM | Invitrogen | 15506017 | |
EDTA 1 mM | Merck | 108452 | |
Falcon tubes | Corning | 352057 | |
LB media | Sigma-Aldrich | L2897 | |
Lithium acetate 0.1 M | Sigma-Aldrich | L6883 | |
Low Melt Agarose | GOLDBIO | A-204-25 | |
Microcentrifuge | eppendorf | 5452000010 | |
Miniprep kit | ZymoPure | D4210 | |
NaOH 0.02 M | Merck | 106462 | |
PEG 3,350 40% | Sigma-Aldrich | 1546547 | |
plasmid pDRFLIP38-AtLEA4-5 | addgene | 178189 | |
Plate reader | BMG LABTECH | CLARIOstar Plus | |
SacI | New England BioLabs | R3156S | |
Salmon sperm DNA 2 mg/mL | Thermo Fisher Scientific | 15632011 | |
SD-Ura | Sigma-Aldrich | Y1501 | |
Sodium cloride | Sigma-Aldrich | S9888 | |
Taq polymesare | Promega | M5123 | |
Transiluminator | Accuris instruments | E4000 | |
UV-Visible spectrophotometer | Thermo Fisher Scientific | Biomate3 | |
YPD media | Sigma-Aldrich | Y1500 |