This protocol utilizes fluorescent promoter-reporters, live-cell microscopy, and individual inclusion extraction in a directed forward genetic approach to identify and isolate developmental mutants of Chlamydia trachomatis.
The intracellular bacterial pathogen Chlamydia trachomatis undergoes a developmental cycle consisting of two morphologically discrete developmental forms. The non-replicative elementary body (EB) initiates infection of the host. Once inside, the EB differentiates into the reticulate body (RB). The RB then undergoes multiple rounds of replication, before differentiating back to the infectious EB form. This cycle is essential for chlamydial survival as failure to switch between cell types prevents either host invasion or replication.
Limitations in genetic techniques due to the obligate intracellular nature of Chlamydia have hampered identification of the molecular mechanisms involved in the cell-type development. We designed a novel dual promoter-reporter plasmid system that, in conjunction with live-cell microscopy, allows for the visualization of cell type switching in real time. To identify genes involved in the regulation of cell-type development, the live-cell promoter-reporter system was leveraged for the development of a forward genetic approach by combining chemical mutagenesis of the dual reporter strain, imaging and tracking of Chlamydia with altered developmental kinetics, followed by clonal isolation of mutants. This forward genetic workflow is a flexible tool that can be modified for directed interrogation into a wide range of genetic pathways.
Chlamydia trachomatis (Ctr) is an obligate intracellular pathogen that progresses through a biphasic developmental cycle that is essential for its survival and proliferation1. This cycle consists of two developmental forms, the elementary body (EB) and the reticulate body (RB). The EB is replication incompetent but mediates cell invasion through effector induced endocytosis2. Once in the host, the EB matures to the replicative RB. The RB carries out multiple rounds of replication prior to converting back to the EB in order to initiate subsequent rounds of infection.
The limited array of genetic tools has restricted most of the chlamydial research to biochemical studies or the use of surrogate systems. As a consequence, elucidation of gene regulation and control of the developmental cycle has been difficult3,4. One of the more important challenges in the chlamydial field is the high resolution temporal tracking of the chlamydial developmental cycle and the identification of the proteins involved in its regulation. Gene expression during the chlamydial developmental cycle has traditionally been performed by destructive “end point” methods including RNAseq, qPCR, and fixed cell microscopy5,6. Although these methods have provided invaluable information, the techniques employed are laborious and have low temporal resolution5,6.
Within the last decade, genetic manipulation of Ctr has progressed with the introduction of plasmid transformation and methods for mutagenesis7,8,9. For this study, a plasmid-based system was developed to monitor chlamydial development in individual inclusions in real time over the course of an infection. A chlamydial transformant was created that expressed both an RB and EB cell-type specific promoter-reporter. The RB specific reporter was constructed by fusing the promoter of the early RB gene euo upstream of the fluorescent protein Clover. EUO is a transcriptional regulator that represses a subset of late EB associated genes10. The promoter of hctB, which encodes a histone-like protein involved in EB nucleoid condensation, was cloned directly upstream of mKate2 (RFP) to create the EB specific reporter11. The backbone for hctBprom-mKate2/euoprom-Clover was p2TK2SW27. The hctB and euo promoters were amplified from Ctr-L2 genomic DNA. Each promoter sequence consisted of ~100 base pairs upstream of the predicted transcription start site for the specified chlamydial gene plus the first 30 nucleotide (10 amino acids) of the respective ORF. The fluorescent FP variants were commercially obtained as Ctr codon optimized gene blocks and cloned in frame with the first 30 nucleotide of each chlamydial gene and promoter. The incD terminator was cloned directly downstream of mKate2. The second promoter-reporter was inserted downstream of the incD terminator. The ampicillin resistance gene (bla) in p2TK2SW2 was replaced with the aadA gene (Spectinomycin resistance) from pBam4. This resulted in the final construct p2TK2-hctBprom-mKate2/euoprom-Clover (Figure 1A) that was transformed into Ctr-L27. This RB/EB reporter strain allowed for the observation of the developmental cycle within single inclusions using live-cell microscopy (Figure 1B,C).
Employing our promoter-reporter construct in combination with chemical mutagenesis, a protocol was devised to track and isolate individual clones that exhibited developmental abnormalities from mutagenized populations of Ctr serovar L2. This protocol allows for the direct monitoring of individual chlamydial inclusions, tracking of the gene expression profiles over time, identifying chlamydial clones that express an altered developmental gene expression pattern, and clonal isolation of Chlamydia from individual inclusions.
Although this protocol has been created specifically for the identification of genes involved in chlamydial development, it could be easily adapted to interrogate any number of chlamydial genetic pathways.
All Python scripts used in this protocol are available on Github https://github.com/SGrasshopper/Live-cell-data-processing
1. Mutagenize Reporter Chlamydia
NOTE: Ctr-L2-hctBprom-mKate2/euoprom-Clover EBs were directly mutagenized using ethyl methanesulfonate (EMS) in the axenic media CIP-1 as this media supports EB metabolism and maintenance of EB infectivity12.
2. Imaging of mutant Ctr
3. Identify and isolate mutagenized Chlamydia with altered developmental phenotypes
4. Verification of mutant isolate phenotypes
5. Data analysis for isolate verification
Direct EMS mutagenesis of our promoter-reporter chlamydial strain resulted in an ~75% reduction in infectivity. Using the described live-cell imaging protocol, ~600 inclusions were imaged and tracked over a 24 h period. The fluorescent expression kinetics of both reporters in each inclusion was visualized using custom Python notebook scripts. Two visualization approaches were implemented to identify candidate mutagenized Chlamydia for isolation. The first methodology (step 3.3.8) visualizes the time to half-maximal expression of euo and hctB promoters from individual chlamydial isolates in an interactive scatter plot (Figure 2). Inclusions were identified for isolation if they fell outside the mock-treated scatter cloud. Candidate clones were picked that visually fell outside of the control cloud. Verification of each clone was performed subsequently. Clones A3-6-67 and B3-8-58 were selected for isolation as they produced shorter times to half-maximal expression from the euo promoter and longer times for hctB (Figure 2).
The second visualization method for identifying inclusions with altered kinetics (steps 3.3.9-10) identifies individual inclusions based on visualization of dynamic gene expression from the two promoters (Video 1). Again, candidate clones with dynamic inclusion expression patterns that were noticeably distinct from control inclusions were picked. B3-6-62 was chosen due to increased fluorescent accumulation from the euo promoter between 23 and 29 HPI (Video 1). A snapshot of the animated graph was taken to identify the location of the inclusions of interest (Figure 3).
Using the two visualization methods, a total of 24 inclusions were identified for isolation. Of the 24 total isolates, 10 showed differential kinetics upon retesting. These isolates fell into three phenotypic categories; 8 isolates exhibited decreased euoprom expression at ~24 HPI, corresponding to the time of RB-EB conversion, as demonstrated by the clone A3-6-67 (Figure 4A). The remaining two clones displayed unique phenotypic profiles, the B3-8-58 isolate also exhibited decreased euoprom expression at ~24 HPI, yet an overall increase in hctBprom expression (Figure 4B), whereas B3-6-62 expressed increased levels of fluorescence from the euo promoter followed by a sudden loss of expression in both promoters (Figure 4C). Analysis of the live-cell micrographs for mutant B3-6-62 revealed that host cell lysis occurred in cells infected with this mutant much earlier than in wildtype infected cells (Video 2).
Figure 1: Monitoring cell-type development with Ctr promoter-reporters.
(A) Schematic of the promoter-reporter construct, p2TK2-hctBprom-mKate2/euoprom-Clover. (B) Live-cell micrograph of euoprom-Clover and hctBprom-mKate2 expression in Ctr at 10 HPI (C) Live-cell micrograph of Ctr expressing euoprom-Clover and hctBprom-mKate2 at 36 HPI. Scale bar: 20 µm. Please click here to view a larger version of this figure.
Figure 2: Identification of representative isolates A3-6-67 and B3-8-58 by visualization of the time to half-maximal expression for each promoter.
The interactive graph is used to identify mutagenized Chlamydia exhibiting expression profiles that differ from the mock-treated control scatter cloud. Each spot on the graph represents a single inclusion. Inclusion spots A3-6-67 and B3-8-58 are highlighted as they fall outside of the mock-treated cloud, both exhibiting shorter time to half-maximal expression of the euo promoter in combination with longer time to half-maximal expression of hctB. euoprom: x-axis, hctBprom: y-axis. Please click here to view a larger version of this figure.
Figure 3: Interactive snapshot for identification of inclusion location.
The graph presented is a snapshot at 28 HPI from the animated scatter plot (Video 1) and was used to identify the FOV and XY coordinate location of inclusions of interest. B3-6-62 is shown as it was chosen for isolation from the animated scatter plot. Please click here to view a larger version of this figure.
Figure 4: Verification of representative mutant isolates.
Developmental profiles of mutagenized isolates A3-6, B3-8, and B3-6. (A) The A3-6 mutant exhibits a decrease euoprom expression at ~24 HPI. (B) The B3-8 mutant isolate exhibits a decrease euoprom expression at ~24 HPI, but an overall increase in hctBprom expression. (C) The B3-6 isolate exhibits increased levels of euoprom expression followed by a sudden loss of expression in both promoters at ~40 HPI. Each sample is the average of the specified population, n > 25. Cloud represents SEM. Please click here to view a larger version of this figure.
Figure 5: Workflow for directed forward genetic analysis of promoter-reporter Ctr:
Ctr-L2-p2TK2-hctBprom-mKate2/euoprom-Clover EBs were directly mutagenized with EMS in axenic media, CIP-1. Mutagenized EBs were used to infect Cos-7 cell monolayers for imaging and fluorescent expression analysis. Chlamydia expressing altered developmental dynamics were identified by visualization in interactive graphs. Inclusions with altered developmental profiles were isolated using a micromanipulator. The phenotypes of the isolates were verified upon reinfection. Mutant isolates are subjected to WGS to identify DNA lesions associated with phenotypes. Please click here to view a larger version of this figure.
Video 1: Identification of mutagenized Chlamydia exhibiting divergent expression kinetics using a dynamic gene expression plot. Promoter expression of euo and hctB for individual inclusions was plotted and visualized through time to identify mutagenized Chlamydia with altered expression dynamics. B3-6-62 was chosen for isolation as it exhibits higher euoprom expression in comparison to the wildtype cloud. euoprom: x-axis, hctBprom: y-axis. Please click here to download this video.
Video 2: Representative mutant B3-6-62 causes premature host-cell lysis. Time-lapse live-cell micrograph of B3-6-62 infected host-cells undergo premature lysis (~40 HPI). Please click here to download this video.
Supplemental Files. Please click here to download these files.
Dissecting the mechanisms that control the chlamydial developmental cycle has been hindered by the limitations of the currently available genetic tools. Employing our promoter-reporter Chlamydia in conjunction with live-cell automated microscopy, a system was built which enables monitoring of cell-type development in individual inclusions over a 24 h period. This system, in combination with chemical mutagenesis and direct inclusion isolation has established a method to rapidly and clonally select Chlamydia expressing altered developmental profiles (Figure 5).
Chlamydial EBs are metabolically active outside the host when provided with intracellular ionic conditions and an energy source5,12. This EB axenic metabolism was leveraged to mutagenize purified EBs outside of host cells. In this protocol, metabolizing EBs were directly mutagenized with EMS. It was observed that EMS treatment effectively reduced EB viability and generated EBs that produced variable developmental kinetics as expected.
It is estimated that the described EMS mutagenesis protocol generates ~5-20 DNA changes/EB. The live-cell microscopy workflow described is capable of imaging ~8 inclusions per field of view (FOV) and 72 FOVs every in a 30 min interval. Therefore, it is estimated that the effects of ~3000-10,000 mutations can be visualized per run. Multiple runs (3-5) will result in visualization of the effects of 9,000-50,000 mutations. The Ctr-L2 genome encodes ~850 genes, suggesting this protocol will result in the visualization of >10 mutations per gene. These estimates indicate that genome coverage, while not complete, should be sufficient.
The strength of this protocol is the ability to track and record the expression kinetics of multiple promoter-reporters at the single inclusion resolution in near real-time. Forward genetics relies on observable phenotypes and clonal isolation. Past methods for forward genetics in Chlamydia relied on static observations and plaquing with agar overlays8. With our methodology, dynamic promoter activity is recorded throughout the developmental cycle and then visualized to identify inclusions that contain Chlamydia with altered gene expression kinetics. Identifying candidate inclusions using multiple parameters (i.e., the time to half-maximal expression and total fluorescent intensity at a given time point) results in distinct mutant pools that display different developmental kinetics. These Chlamydia are likely to have unique mutations that affect the regulation of separate genetic pathways. The fact that these profiles can be recorded live and visualized after a few hours allows time to locate and isolate the inclusions of interest from the infected monolayer. Although we focused on the gene expression dynamics during development, alternative gene reporters can be used to probe other regulatory pathways.
Depending on the genetic pathways being interrogated, caution should be taken with the addition of cycloheximide to host cells. Although incubation with cycloheximide improves the imaging characteristics of the monolayer by blocking replication of the host cells; this effect is achieved through inhibiting host protein synthesis. Inhibition of de novo host protein synthesis could influence the results of the genetic screen depending on the question asked.
Phototoxicity and photobleaching are major hurdles in long-term time-lapse microscopy. To overcome these issues, the specific characteristics of each fluorescent protein should be considered prior to experimentation. Clover and mKate2 have short maturation times (20-30 m) are photostable, and exhibit relatively large quantum yields17,18. These qualities allow for the reduction of excitation intensity and exposure time, thus reducing the amount of phototoxicity and photobleaching incurred. The phase/DIC white light channel was employed for autofocusing as this spectrum of light was less phototoxic to Chlamydia.
For this protocol, EMS was used as a chemical mutagen. EMS causes G:C to A:T transitions via guanine alkylation19. However, this protocol can be expanded to include alternative mutagens that can induce other kinds of genomic mutations. For instance, acridines are a class of DNA intercalating compounds which induce indels, increasing the chance of frame shifts and therefore null mutations20.
With advances in chlamydial transformation techniques, mutated genes that are associated with phenotypic complementation groups can be knocked out via insertional gene disruption and genetic complementation for verification of genotype-phenotype linkage9. Recovering mutants that block RB to EB development could be problematic as mutations of interest may produce Chlamydia that cannot reinfect host cells. This technique can be modified to identify developmental genes by statistical associations (GWAS). The genomes of Chlamydia from isolated inclusions can be directly sequenced without expansion and verification. The high throughput nature of this technique would make statistical associations possible. Again, verification of these associations can be tested through gene disruption and complementation9.
The authors have nothing to disclose.
We thank Dr. Anders Omsland at Washington State University for supplying the CIP-1 axenic media. This work was supported by NIH grant R01AI130072, R21AI135691 and R21AI113617. Additional support was provided by startup funds from the University of Idaho and the Center for Modeling Complex Interactions through their NIH grant P20GM104420.
24-well polystyrene plates | Corning | 3524 | Cell culture growth for reinfection of isolates |
6-well glass bottom plates | Cellvis | P06-1.5H-N | Cell culture growth for imaging |
96-well glass bottom plates | Nunc | 165305 | Cell culture growth for imaging |
Bold line CO2 Unit | OKO Labs | CO2 UNIT BL | Stage incubator CO2 control |
Bold line T Unit | OKO Labs | H301-T-UNIT-BL-PLUS | Stage incubator temperature control |
Borosilicate glass capillary tubes | Sutter Instrument | B1005010 | Capillary tubes |
BrightLine bandpass emissions filter (514/30nm) | Semrock | FF01-514/30-25 | Fluoescent filter cube |
BrightLine bandpass emissions filter (641/75nm) | Semrock | FF02-641/75-25 | Fluoescent filter cube |
CellTram Vario | Eppendorf | 5196000030 | Microinjector |
Chlamydia trachmatis serovar L2 | ATCC | VR-577 | Chlamydia trachomatis |
CIP-1 media | In house | NA | Axenic media. IPB supplemented with 1% FBS, 25 μM amino acids, 0.5 mM G6P, 1.0 mM ATP, 0.5 mM DTT, and 50 μM GTP, UTP, and CTP. (Omsland, A. 2012) made in-house. |
Cos-7 cells (ATCC) | ATCC | CRL-1651 | African green monkey kidney cell (host cells) |
Cycloheximide | MP Biomedicals | 194527 | Host cell growth inhibitor |
Ethyl methanesulfonate, 99% | Acros Organics | AC205260100 | Mutagen |
Fetal Plex | Gemini Bio-Products | 100-602 | Supplement for base growth media |
Fiji/ImageJ | https://imagej.net/Fiji | NA | Open sourse Image analysis software. https://imagej.net/Fiji |
Galaxy 170 S CO2 incubator | Eppendorf | CO1700100X | Cell culture incubation |
gblocks (Fluorescent FP variants: Clover and mKate2) | Integrated DNA Technologies | NA | gblock ORFs of Ctr optimized FP varients for cloning into p2TK2SW2 |
Gentamycin 10mg/ml | Gibco | 15710-064 | Antibiotic for growth media |
HBSS (Hank's Balanced Salt Solution) | Corning | 21-020-CM | Host cells rinse |
Heparin sodium | Amersham Life Science | 16920 | inhibits and reverses the early electrostatic interactions between the host cell and EBs |
HEPES 1M | GE Life Sciences | SH30237.01 | pH buffer for growth media |
InjectMan | Eppendorf | 5179 000.018 | Micromanipulator |
Jupyter Notebook | https://jupyter.org/ | NA | Visualization of inclusion traces. https://jupyter.org/ |
Lambda 10-3 | Sutter Instrument | LB10-3 | Filter wheel controler |
Oko Touch | OKO Labs | Oko Touch | Interface to control the Bold line T and CO2 Unit |
Prior XY stage | Prior | H107 | Motorized XY microscope stage |
PrismR Centrifuge | Labnet | C2500-R | Temperature controlled microcentrifuge |
Problot Hybridization oven | Labnet | H1200A | Rocking Incubator for infection with Chlamydia |
Proscan II | Prior | H30V4 | XYZ microscope stage controler |
Purifier Class 2 Biosafety Cabinet | Labconco | 362804 | Cell culture work |
RPMI-1640 (no phenol red) | Gibco | 11835-030 | Base growth media for imaging |
RPMI-1640 (phenol red) | GE Life Sciences | SH30027.01 | Base growth media |
scopeLED excitation LEDs (470nm,595nm) | scopeLED | F140 | Excitation light |
Sonic Dismembrator Model 500 | Fisher Scientific | 15-338-550 | Sonicator, resuspending chlamydial pellet |
Stage incubator | OKO Labs | H301-K-FRAME | Cluster well plate incubation chamber |
sucrose-phosphate-glutamate buffer 1X (SPG) | In house | NA | Chlamydial storage buffer. (10 mM sodium phosphate [8 mM K 2HPO 4, 2 mM KH 2PO 4], 220 mM sucrose, 0.50 mM L-glutamic acid; pH 7.4) |
T-75 Flasks | Thermo Scientific | 156499 | Cell culture growth |
TE 300 inverted microscope | Nikon | 16724 | microscope |
THOR LED | Thor Labs | LEDD1B | White light |
Trypsin | Corning | 25-052-CI | Dislodges host cells from flask for seeding into plates |
Zyla sCMOS | Andor | ZYLA-5.5-USB3 | imaging camera |
µManager 2.0gamma | https://github.com/micro-manager/micro-manager | NA | Open sourse automated microscope control software package |