Elevated spinal fluid protein levels can either be the result of diffusion of plasma protein across an altered blood-brain barrier or intrathecal synthesis. An optimized testing protocol is presented in this article that helps to discriminate both cases and provides quantitative measurements of intrathecally synthesized proteins.
Cerebrospinal fluid (CSF), a fluid found in the brain and the spinal cord, is of great importance to both basic and clinical science. The analysis of the CSF protein composition delivers crucial information in basic neuroscience research as well as neurological diseases. One caveat is that proteins measured in CSF may derive from both intrathecal synthesis and transudation from serum, and protein analysis of CSF can only determine the sum of these two components. To discriminate between protein transudation from the blood and intrathecally produced proteins in animal models as well as in humans, CSF protein profiling measurements using conventional protein analysis tools must include the calculation of the albumin CSF/serum quotient (Qalbumin), a marker of the integrity of the blood-brain interface (BBI), and the protein index (Qprotein/Qalbumin), an estimate of intrathecal protein synthesis. This protocol illustrates the entire procedure, from CSF and blood collection to quotients and indices calculations, for the quantitative measurement of intrathecal protein synthesis and BBI impairment in mouse models of neurological disorders.
Cerebrospinal fluid (CSF), a clear and colorless liquid surrounding the brain and the spinal cord, holds great clinical and basic scientific importance. The CSF preserves the electrolytic environment of the central nervous system (CNS), balances the systemic acid-base status, supplies nutrients to neuronal and glial cells, functions as a lymphatic system for the CNS, and transports hormones, neurotransmitters, cytokines and other neuropeptides throughout the CNS1. Thus, as the CSF composition reflects the activity of the CNS, this fluid offers a valuable, though indirect, access to characterize the physiological and pathological state of the CNS.
CSF has been used to diagnose conditions that affect the CNS for over a hundred years, and for most of this time, it was primarily studied by clinicians as a diagnostic tool. However, in recent years neurobiologists have recognized the potential of CSF for studying the pathophysiology of the CNS. In particular, several high-throughput protein analysis tools have been introduced in the neuroscience realm allowing a detailed study of the protein composition of the CSF, with the expectation that this analysis may help provide insight into the dynamic changes occurring within the CNS.
Technological developments in multiplex immunoassay techniques such as Luminex and Simoa technologies2,3, provide researchers today with the ability to detect hundreds of proteins at very low concentrations. Moreover, these same technologies allow the use of small sample volumes, thereby promoting studies in small animals, including mice, in which limited sample volumes of CSF has precluded detailed characterizations of the fluid until recently.
Nevertheless, one caveat is that proteins measured in CSF may derive from intrathecal synthesis and/or transudation from serum due to a damaged blood-brain interface (BBI). Unfortunately, protein analysis of CSF alone can only determine the sum of these two components. To discriminate between transudate and intrathecally produced proteins, CSF protein measurements using any available protein analysis tool must be adjusted for individual variability in serum concentrations as well as barrier integrity. However, although this adjustment is commonly used in clinical practice, e.g., the CSF IgG index, which has high sensitivity for detecting intrathecal IgG synthesis4,5,6, to date very few research studies have corrected CSF protein concentrations for serum concentration and barrier integrity7,8.
Currently, the Reibergram approach is the best way to determine the barrier function and intrathecal synthesis of proteins. It is a graphical evaluation in CSF/serum quotient diagrams which analyzes, in an integrated way, both the barrier (dys)function and intrathecal protein synthesis, referring to an exclusively blood-derived protein9,10. The highly abundant protein albumin is usually chosen as reference protein because it is produced only in the liver and because its size, approximately 70 kDa, is intermediate between small and large proteins11. The analysis diagram was first defined by Reiber and Felgenhauer in 1987 for the major classes of immunoglobulins (Igs)11, being empirically based on the results obtained from the analysis of thousands of human samples9. The approach was subsequently confirmed by the application of the two Fick’s laws of diffusion in the theory of molecular diffusion/flow rate12. Such a theory demonstrates the diffusion of a protein through the barrier has a hyperbolic distribution and can quantitatively explain the dynamics of proteins in the CNS9,13. Overall, the advantage of using the Reibergram for demonstrating intrathecal protein synthesis is that it concurrently identifies the protein fraction that enters the CSF from serum as well as the amount of protein found in the CSF because of local production.
The present article and the related protocol describe the entire procedure, from CSF and blood collection to the final calculations correcting CSF protein levels, for the quantitative measurement of intrathecal protein synthesis in mouse models of neurological disorders. This procedure provides a baseline against which to assess (1) the pathophysiological origin of any CSF protein and (2) the stability and functional significance of the barrier integrity. This procedure and protocol are not only useful for assessing mouse CSF samples but are also useful in analyzing CSF in a multitude of animal models of neurological diseases and human patients.
All animal work utilizes protocols reviewed and approved by the Institutional Animal Care and Use Committee (IACUC) at Geisel School of Medicine at Dartmouth.
1. Collection of fluids
NOTE: Both serum and CSF are required. Two protocols for each fluid collection are needed for survival and necropsy.
2. Protein analysis
3. Intrathecal index calculations
This representative experiment aimed to compare the intrathecal synthesis of IgG in two clinically relevant rodent models of multiple sclerosis (MS): the PLP139-151-induced relapsing experimental autoimmune encephalomyelitis (R-EAE) and the chronic progressive, Theiler’s murine encephalomyelitis virus-induced demyelinating disease (TMEV-IDD). R-EAE is a useful model for understanding relapsing-remitting MS, whereas the TMEV-IDD model features chronic progressive MS19.
For the present study, a quantitative analysis of the intrathecal IgG synthesis in R-EAE (n = 12) and TMEV-IDD (n = 28) has been performed. Both groups were analyzed at the peak of their disease. An additional group of 10 mice was sham-treated and served as age-matched control groups (cR-EAE n = 4, cTMEV-IDD sham n = 6).
A magnetic bead-based approach with the commercially available kit (Table of Materials) was used to measure total IgG in matched serum and CSF specimens. The total IgG value was derived from the sum of the subclass IgG1, IgG2a, IgG2b, and IgG3 values. Albumin was measured with a commercial mouse albumin ELISA kit (Table of Materials) because a Luminex assay for albumin was not available at that time. All measurements were performed carefully following the manufacturers’ instructions. Albumin quotient (Qalbumin) and IgG index (QIgG/Qalbumin) were then used to differentiate blood- versus CNS-derived IgG in the CSF.
As shown in Figure 3A, actual levels of total IgG are significantly increased in the CSF of both rodent models of MS when compared to the corresponding age-matched sham controls (p ≤ 0.026). However, R-EAE mice show significantly enhanced Qalbumin values (p ≤ 0.019), indicating increased permeability of the barrier in these mice (Figure 3B). Conversely, no differences in Qalbumin exist between TMEV-IDD and sham mice (p = 0.49), thus corroborating our previous finding of an intact barrier in TMEV-IDD mice7,8. To further discriminate between transudate and intrathecally produced IgG in R-EAE and TMEV-IDD, the IgG Index was measured, showing significantly higher values in TMEV-IDD mice (p ≤ 0.0006), and therefore intrathecal IgG production in this model (Figure 3C).
An intact barrier in TMEV-IDD mice along with a high IgG index suggests that in this model, antibody is produced within the CNS. Conversely, in R-EAE, a significant barrier breakdown and a low IgG index provide evidence that the CSF IgG is mostly produced by peripheral rather than intrathecal B cells, also suggesting that in this acute model of MS, CSF IgG is mostly derived from serum.
Figure 1: Retro-orbital bleeding of mice. Left: Correct placement of the needle relative to the retro-orbital sinus, the eyeball and the back of the orbit. Right: Pipette location begins in the medial canthus of the eye and glides to the dorsal aspect of orbit. The capillary is inserted at an angle of 45°. Please click here to view a larger version of this figure.
Figure 2: CSF collection in mice. (A) The ear bars support the head of the mouse, and the mouse is laid down so that the head forms a 135° angle with the body. The arrow points to the exposed cisterna magna. (B) By blunt dissection with forceps, the muscles are separated to expose the cisterna magna (pointed by the arrow). Microretractors are used to hold the muscles apart. (C) A small glass capillary tube is used to collect CSF from the cisterna magna. CSF flows spontaneously into the capillary, due to the intracranial pressure. The arrow points to the collected CSF in the capillary. (D) The CSF is transferred into a 0.5 mL tube through a modified 3 mL syringe. Please click here to view a larger version of this figure.
Figure 3: Blood-brain barrier function and intrathecal synthesis of IgG in R-EAE and TMEV-IDD. Dot blot representing (A) the CSF levels of total IgG (mg/dL) measured by Luminex technology, (B) albumin CSF/serum quotients (Qalbumin), and (C) IgG indices (QIg/Qalbumin) in R-EAE and TMEV-IDD mice as well as age-matched control mice (cR-EAE and cTMEV-IDD). Horizontal lines represent the median value for that group. ****p < 0.0001; ***p < 0.001; **p < 0.01; *p < 0.05. Please click here to view a larger version of this figure.
Quantitative methods for the evaluation of increased CSF protein concentrations are useful tools in the characterization of the physiological and pathological state of the CNS. However, beyond reliable quantification of CSF protein levels, the detection of CSF proteins requires an expression of results that discriminates between blood- and CNS-derived fractions in the CSF. However, to date, the commonly used protein quantification assays do not allow discrimination between the two protein components, even with the aid of high-throughput tools. Thus, specific corrections to protein measurements have been proposed in order to distinguish between proteins synthesized within the CNS compartment and proteins derived from the blood. Such corrections compensate for individual variability in both serum concentrations and barrier integrity. Overall, these corrections are based on calculations of a CSF/serum quotient (Qprotein), which reduces variability due to differences in the individual concentration of serum protein. Variation of the Qprotein related to individual differences in barrier function can be further lowered by relating the Qprotein to a CSF/serum albumin quotient (Qalbumin). The combination of both corrections is generally known as protein index and is calculated as Qprotein/Qalbumin ratio4,6.
Albumin, synthesized and secreted by the liver, is the major plasma protein that circulates in the bloodstream. Because albumin is produced exclusively outside the CNS and its levels in CSF are low (~0.15 g/dL), increased CSF albumin levels indicate either damage to the BBI or blood contamination due to intrathecal hemorrhage or traumatic CSF collection. In any of these conditions, albumin transudates from serum into the CSF in proportion to its serum concentration. Therefore, in the absence of blood contamination, the Qalbumin can be used as an indicator of barrier function20. Conversely, the Qalbumin remains constant within normal ranges in humans and animals with an intact BBI21. A fundamental assumption for using this quotient4,6 in intrathecal protein synthesis calculation is that the increased amount of CSF protein in the presence of a leaky barrier is proportional to the increase in CSF albumin concentration. This assumption has been experimentally confirmed in a study from 19774, in which authors monitored in MS patients the blood–CSF passage of radiolabeled IgG and albumin obtained from healthy human sera.
Similar to albumin, any protein in the blood can cross the BBI. When the barrier is intact, the Qprotein is relatively constant. Unlike albumin, however, many proteins can also be synthesized within the CNS. As a consequence, an altered Qprotein can result from a damaged barrier and/or increased intrathecal protein production. Nevertheless, when an elevated CSF protein concentration is due just to a compromised BBI, values for both Qprotein and Qalbumin are increased, compared to values for these same quotients in animals with an intact barrier. In contrast, when the barrier is intact, increased CSF protein concentrations are most likely due to increased intrathecal synthesis, and only the Qprotein is ultimately increased.
The use of the protein index may be partially limited by five factors: 1) the large variability of CSF albumin concentration in healthy animals, 2) the different hydrodynamic radius of proteins, 3) the endogenous CNS expression of proteins, 4) different sampling techniques, and 5) the morphological differences of the BBI. The large variability of CSF albumin concentration in healthy animals results in considerable variability in the values for the final protein index. In humans, for example, the Qalbumin is age-dependent since it increases with age22. A previous report also mentioned a sex-based difference in Qalbumin in a healthy population23. Likewise, in mice albumin concentrations depend on age and mouse strain24, e.g., the Qalbumin for young, male, C57Bl/6 mice may be different from the Qalbumin for old, female, DBA/1J mice. Therefore, standardized reference intervals for barrier integrity cannot be established across and within species, and appropriate thresholds have to be calculated based on the specific experimental conditions.
Another factor causing variability in normal indexes among proteins is their molecular size. The passage of serum proteins through the BBI depends on their molecular size, and the correlation between clearance rate and molecular weight (MW) is widely used to evaluate the permeability of the BBI. General protein structures range in size from tens to several thousand amino acids. Some proteins are of relatively small molecular size, such as chemokines, with a molecular weight ranging between 8 and 20 kDa. Such a low MW favors crossing of the BBI, ultimately resulting in higher normal protein indexes. Differently, other proteins, like IgM, are very large (900−950 kDa), therefore showing very low indexes in normal conditions6. However, this is not always the case, since, despite a similar MW, some proteins permeate the barrier much better than other proteins, possibly because of a different shape. Thus, the diffusion coefficient of a protein, and hence the hydrodynamic radii calculated from it, depends on both size and shape of molecules25. The fundamental difference between the geometric and the hydrodynamic volume of a protein becomes most evident with large proteins above 150 kDa. The decreasing clearance rates of, for example, ceruloplasmin (132 kDa), IgG (150 kDa), and IgA (150 kDa) reflect the hydrodynamic heterogeneity of these three proteins, which have similar MW25. It is also possible that there is intrathecal production of proteins under normal circumstances. Some chemokines, e.g., CXCL10, are typically produced intrathecally, while others, e.g., CXCL13, are not26,27. This means that interpretation of protein indexes under most experimental conditions generally requires analysis of age-, sex-, and strain-matched untreated controls.
Protein levels in fluids can also be affected by different sampling techniques. While this may not be an issue for CSF collection as described here -there are no differences in CSF sampling between the described survival and non-survival procedures-, different blood collection methods may have an impact on the total serum protein amount. Some methods of blood collection yield arterial blood, others yield venous blood, while still others yield a mixture of both14. The sample obtained from survival retro-orbital bleeding is a mixture of venous blood and tissue fluid, whereas the terminal blood collection from the cardiac puncture can yield venous or arterial blood or a mixture of both14. In healthy animals, the total protein and albumin content of the arterial blood serum may be slightly higher than the same fractions of the venous blood serum28. This should be taken into consideration when survival and non-survival samples are compared.
Finally, an important feature to consider is the heterogeneous morphological structure of the BBI, which comprises at least two distinct barriers, the blood-brain barrier (BBB) located at the endothelium of the brain microvessels and the blood–CSF barrier (BCSF) located at the epithelium of the choroid plexuses29. Both barriers restrict and regulate the passage of molecules and cells between the peripheral and cerebrospinal compartments, although they do so by different mechanisms. While the BBB is a real physical barrier, characterized by a complex interplay among cells, the BCSF is more of a physiological barrier, which mostly depends on the CSF flow. Reductions in CSF production, release, and flow rate due to neurological conditions and/or trauma impair the BCSF function, thereby increasing the Qalbumin9,30,31,32. Therefore, Qalbumin serves as a better marker of the BCSF permeability rather than the BBB or generally BBI permeability.
In summary, the calculation of a protein index is a relatively simple, and well-characterized method for discrimination between transudate and intrathecally produced proteins. The advantage of applying this formula to correct the general measurement of proteins in CSF samples is that it generates an objective variable to quantify the intrathecal synthesis of proteins and to measure the BBI, specifically BCSF, (dys)function. Given the robustness of this approach, the correction of the CSF protein amounts through the Qalbumin and protein index provides a baseline against which to assess (1) the pathophysiologic origin of any CSF protein and (2) the stability and functional significance of barrier integrity. Here it is presented a detailed protocol, from CSF and blood collection to the final calculations correcting the total CSF protein amount, which applies to mouse models for neurological diseases. However, the same protocol can be easily adapted to the study of CSF and intrathecal synthesis of proteins in any animal, including humans. Qalbumin and IgG index are already commonly used in clinical practice for the diagnosis of inflammatory neurological diseases6. These same parameters have also been successfully used to evaluate a broad range of cytokines and chemokines in patients with inflammatory demyelinating diseases26,33,34.
The authors have nothing to disclose.
The authors thank the staff of the Center for Comparative Medicine and Research (CCMR) at Dartmouth for their expert care of the mice used for these studies. The Bornstein Research Fund funded this research.
1 mL insulin syringe | BD | 329650 | |
1 mL syringe | BD | 329622 | |
25 gauge needle | BD | 305122 | |
3 mL syringe | BD | 309582 | |
30 gauge insulin needle | BD | 305106 | |
Absorbent pads | Any suitable brand | ||
Acepromazine | Patterson Vet Supply Inc | ||
BioPlex Handheld Magnetic Washer | BioRad | 171020100 | Magnet |
BioPlex MAGPIX Multiplex Reader | BioRad | 171015001 | |
BioPlex Pro Flat Bottom Plates | BioRad | 171025001 | |
Biotinilated detection antibody | Any suitable source | The antibody has to be directed against the species of the protein of interest. | |
Bovine Serum Albumin (BSA) | Sigma | A4503 | |
Buprenorphine hydrochloride | PAR Pharmaceutical | NDC 42023-179-05 | |
Capillary Tubes | Sutter Instrument | B100-75-10 | OD: 1.0 mm, ID: 0.75 mm Borosilicate glass 10 cm; drawn over Bunsen to make ID smaller. |
Centrifuge tube, 0.2 mL | VWR | 20170-012 | |
Centrifuge tube, 0.5 mL | VWR | 87003-290 | |
Centrifuge tube, 1.5 mL | VWR | 87003-294 | |
Chlorhexidine diacetate | Nolvasan | E004272 | |
Disposable pipettes tips | Any suitable brand | ||
Ear bars | KOPF Instruments | 1921 or 1922 | |
Ethanol | Kopter | V1001 | |
Freezer | VWR | VWR32086A | |
Gauze | Medline | NON25212 | |
Heating pad | Sunbeam | XL King Size SoftTouch, 4 Heat Settings with Auto-Off, Teal, 12-Inch x 24-Inch | |
Induction Chamber | VETEQUIP | ||
Isoflurane | Patterson Vet Supply Inc | NDC 14043-704-06 | |
Ketamine (KetaVed) | Patterson Vet Supply Inc | ||
MagPlex Microspheres (antibody-coupled) | BioRad | Antibody-coupled magnetic bead | |
Microplate Shaker | Southwest Scientific | SBT1500 | |
Microretractors | Carfill Quality | ACD-010 | Blunt – 1 mm |
Microsoft Office (Excel) | Microsoft | ||
MilliPlex MAP Mouse Immunoglobulin Isotyping Magnetic Bead Panel | EMD Millipore | MGAMMAG-300K | Commercial kit for the quantification through Luminex of a panel of immunoglobulin isotypes and subclasses in mouse fluids. |
Mouse Albumin capture ELISA kit | Novus Biological | NBP2-60484 | Commercial kit for the quantification through ELISA of albumin in mouse fluids. |
Multichannel pipette | Eppendorf | 3125000060 | |
Non-Sterile swabs | MediChoice | WOD1002 | Need to be autoclaved for sterility |
Oxygen | AIRGAS | OX USPEA | |
Pasteur Pippettes | Fisher | 13-678-20A | 5 & 3/4" |
PDS suture with disposable needle, 6-0 Prolen | Patterson Vet | 8695G | P-3 Reverse Cutting, 18" |
PE-Streptavidin | BD Biosciences | 554061 | |
Pipetters | Eppendorf | Research seriers | |
Polyethylene tubing | |||
Refrigerated Centrifuge | Beckman Coulter | ALLEGRA X-12R | |
Scale | Uline | H2716 | |
Scalpel | Feather | EF7281 | |
Shaver | Harvard Apparatus | 52-5204 | |
Standard proteins | Any suitable source | The best choice for a reference standard is a purified, known concentration of the protein of interest. | |
Stereotaxic instrument | KOPF Instruments | Model 900LS | Standard Accessories |
Sterile 1 x PBS | Corning Cellgro | 21-040-CV | |
Sterile saline | Baxter | 0338-0048-02 | 0.9 % Sodium Chloride Irrigation USP |
Surgical Forceps Curved, 7 (2) | Fine Science Tools | 11271-30 | Dumont |
Surgical Scissors | Fine Science Tools | 14094-11 | Stainless 25x |
Vaporizer + Flow meter | Moduflex Anhestesia Instruments | ||
Vortex | Fisher | 02-215-414 | |
Warming pad | Kent Scientific Corporation | RT-JR-20 | |
Water Sonicator | Cole Parmer | EW-08895-01 | |
Xylazine | Patterson Vet Supply Inc |