Il protocollo presenta la riprogrammazione delle cellule mononucleari del sangue periferiche per indurre le cellule staminali neurali mediante l’infezione da virus Sendai, la differenziazione degli iNSC in neuroni dopaminergici, il trapianto di precursori DA nei precursori unilateralmente Modelli murini del morbo di Parkinson e valutazione della sicurezza e dell’efficacia dei precursori DA derivati da iNSC per il trattamento con LA PD.
Il morbo di Parkinson (PD) è causato dalla degenerazione dei neuroni dopaminergici (DA) alla substantia nigra pars compacta (SNpc) nel mesencephalon ventrale (VM). La terapia sostitutiva cellulare promette molto per il trattamento della PD. Recentemente, le cellule staminali neurali indotte (iNSC) sono emerse come potenziale candidato per la terapia sostitutiva cellulare a causa del ridotto rischio di formazione del tumore e della plasticità di dare origine a neuroni e glia specifici della regione. Gli iNSC possono essere riprogrammati da fonti cellulari somatiche autologhe, come fibroblasti, cellule mononucleari del sangue periferico (PBMCNC) e vari altri tipi di cellule. Rispetto ad altri tipi di celle somatiche, i PBMCC sono un tipo di cellula di partenza accattivante a causa della facilità di accesso ed espansione nella coltura. Il virus Sendai (SeV), un virus RNA non integrativo, che codifica i fattori di riprogrammazione tra cui l’uomo OCT3/4, SOX2, KLF4 e c-MYC, ha un genoma a senso negativo, a filamento singolo e non segmentato che non si integra genoma ospite, ma si replica solo nel citoplasma delle cellule infette, offrendo un veicolo efficiente e sicuro per la riprogrammazione. In questo studio viene descritto un protocollo in cui gli iNSC vengono ottenuti riprogrammando i PBMCNC, e differenziati in neuroni VM DA specializzati con un metodo a due stadi. Poi i precursori DA vengono trapiantati in modelli murini PD a 6-hyroxydopamina (6-OHDA) per valutare la sicurezza e l’efficacia per il trattamento della PD. Questo metodo fornisce una piattaforma per studiare le funzioni e gli effetti terapeutici delle cellule neurali DA specifiche del paziente in vitro e in vivo.
Il morbo di Parkinson (PD) è un disturbo neurodegenerativo comune, causato dalla degenerazione dei neuroni dopaminergici (DA) alla substantia nigra pars compacta (SNpc) nella mesincephalon ventrale (VM), con una prevalenza di oltre l’1% della popolazione sopra i 60 anni di età 1 : il nome del , 2. Nell’ultimo decennio, la terapia cellulare, volta a sostituire le cellule degenerative o danneggiate, o a nutrire il microambiente intorno ai neuroni degeneranti, ha mostrato un potenziale nel trattamento della PD3. Nel frattempo, la tecnologia di riprogrammazione ha fatto progressi significativi4, che fornisce una fonte cellulare promettente per la terapia sostitutiva. Le cellule staminali pluripotenti indotte dall’uomo (iPSC) e le cellule staminali embrionali (ESC) hanno dimostrato di essere in grado di differenziarsi nelle cellule neurali DA, che potrebbero sopravvivere, maturarsi e migliorare le funzioni motorie quando innestate nei modelli di PD di ratti e primati non umani5 ,6,7,8. Gli iPSC rappresentano una pietra miliare nelle tecnologie di riprogrammazione cellulare e hanno un grande potenziale nel trapianto di cellule; tuttavia, c’è ancora una preoccupazione circa il rischio di formazione del tumore dalle cellule incompletamente differenziate. Una fonte cellulare alternativa per il trapianto di cellule è costituita da cellule staminali adulte impegnate nel lignaggio ottenute attraverso la riprogrammazione diretta, come le cellule staminali neurali indotte (iNSC), che possono essere derivate dagli intermedi instabili, bypassando la pluripotenza fase9,10,11.
Sia gli iPSC che gli iNSC possono essere riprogrammati da fonti cellulari autologhe, come fibroblasti, cellule mononucleari del sangue periferico (PBMCNC) e vari altri tipi di cellule12,13,14, riducendo così la immunogenicità delle cellule trapiantate in gran parte. Inoltre, rispetto agli iPSC, gli iNSC sono intrinseci con ridotto rischio di formazione del tumore e plasticità impegnata nel lignaggio, solo in grado di differenziarsi in neuroni e glia11. Negli studi iniziali, iPSC umani o topi e iNSC sono stati generati da fibroblasti ottenuti da biopsie cutanee, che è una procedura invasiva14,15. A questo proposito, i PBMNC Sono una fonte di cellule di partenza attraente a causa del processo di campionamento meno invasivo e della facilità di ottenere un gran numero di cellule entro un breve periodo di tempo di espansione16. Gli studi iniziali di riprogrammazione hanno impiegato sistemi di erogazione integrativi, come vettori lentivirali o retrovirali, che sono efficienti e facili da implementare in molti tipi di cellule17; tuttavia, questi sistemi di somministrazione possono causare mutazioni e riattivazione di transgeni residui, che presentano problemi di sicurezza per scopi terapeutici clinici12. Il virus Sendai (SeV) è un virus RNA non integrativo con un genoma a singolo filamento negativo che non si integra nel genoma dell’ospite, ma si replica solo nel citoplasma delle cellule infette, offrendo un veicolo efficiente e sicuro per la riprogrammazione18 ,19. Sono disponibili vettori SeV ricombinanti che contengono fattori di riprogrammazione, tra cui l’oggetto OCT3/4, SOX2, KLF4 e c-MYC nei frame di lettura aperti. Inoltre, i vettori virali SeV possono essere ulteriormente migliorati introducendo mutazioni sensibili alla temperatura, inmodo che possano essere rapidamente rimossi quando la temperatura di coltura viene aumentata a 39 . In questo articolo viene descritto un protocollo per riprogrammare i PBMNN in iNSC utilizzando il sistema SeV.
Molti studi hanno riportato la derivazione di neuroni DA da ESC umani o iPSC utilizzando vari metodi6,8,21. Tuttavia, c’è una carenza di protocolli che descrivono la differenziazione dei neuroni DA da iNSC nei dettagli. In questo protocollo, descriveremo la generazione efficiente di neuroni DA da iNSC utilizzando un metodo a due stadi. I precursori neuronali DA possono essere trapiantati nello striato dei modelli murini della PD per le valutazioni di sicurezza ed efficacia. Questo articolo presenterà un protocollo dettagliato che copre varie fasi dalla generazione di cellule staminali neurali indotte dal virus Sendai, la differenziazione di iNSC in neuroni DA, la creazione di modelli di PD murino, al trapianto di precursori DA nello striato dei modelli PD. Utilizzando questo protocollo, si possono generare iNSC da pazienti e donatori sani e derivare neuroni DA sicuri, standardizzati, scalabili e omogenei ai fini del trapianto di cellule, o per la modellazione della PD in un piatto e lo studio dei meccanismi l’insorgenza e lo sviluppo della malattia sottostante.
Qui abbiamo presentato un protocollo che ha coperto diverse fasi della terapia cellulare iNSC-DA per i modelli PD. Gli aspetti critici di questo protocollo includono: (1) isolamento e espansione dei PBMCNC e riprogrammazione dei PBMCNC in iNSC mediante infezione da SeV, (2) differenziazione degli iNSC ai neuroni DA, (3) creazione di modelli murini PD unilaterali 6-OHDA-lesioned e (4) il trapianto di cellule dei precursori da DA e la valutazione comportamentale.
In questo protocollo, la prima p…
The authors have nothing to disclose.
Il lavoro è stato sostenuto dalle seguenti sovvenzioni: Stem Cell and Translation National Key Project (2016YFA010101403), National Natural Science Foundation of China (81661130160, 81422014, 815611138004), Beijing Municipal Natural Science Foundation (5142005), Beijing Talents Foundation (2017000021223TD03), Progetto di sostegno degli insegnanti di alto livello nelle università comunali di Pechino nel periodo del tredicesimo piano quinquennale (CIT e TCD2018033), Beijing Medical System High Level Talent Award (2015-3-063), Pechino Fondo della Commissione Sanitaria Comunale (PXM 2018_026283_000002), Beijing One Hundred, Thousand, and Ten Ten Thousand Talents Fund (2018A03), Amministrazione Municipale di Medicina Clinica degli Ospedali Sviluppo di Sostegno Royal Society-Newton Advanced Fellowship (NA150482).
15-ml conical tube | Corning | 430052 | |
1-Thioglycerol | Sigma-Aldrich | M6145 | Toxic for inhalation and skin contact |
24-well plate | Corning | 3337 | |
50-ml conical tube | Corning | 430828 | |
6-OHDA | Sigma-Aldrich | H4381 | |
6-well plate | Corning | 3516 | |
Accutase | Invitrogen | A11105-01 | Cell dissociation reagent |
Apomorphine | Sigma-Aldrich | A4393 | |
Ascorbic acid | Sigma-Aldrich | A92902 | Toxic with skin contact |
B27 supplement | Invitrogen | 17504044 | |
BDNF | Peprotech | 450-02 | Brain derived neurotrophic factor |
Blood collection tubes containing sodium heparin | BD | 367871 | |
BSA | yisheng | 36106es60 | Fetal bovine serum |
cAMP | Sigma-Aldrich | D0627 | Dibutyryladenosine cyclic monophosphate |
CellBanker 2 | ZENOAQ | 100ml | Used as freezing medium for PBMNCs |
Chemically defined lipid concentrate | Invitrogen | 11905031 | |
CHIR99021 | Gene Operation | 04-0004 | |
Coverslip | Fisher | 25*25-2 | |
DAPI | Sigma-Aldrich | D8417-10mg | |
DAPT | Sigma-Aldrich | D5942 | |
Dexamethasone | Sigma-Aldrich | D2915-100MG | |
DMEM-F12 | Gibco | 11330 | |
DMEM-F12 | Gibco | 11320 | |
Donkey serum | Jackson | 017-000-121 | |
EPO | Peprotech | 100-64-50UG | Human Erythropoietin |
FGF8b | Peprotech | 100-25 | |
Ficoll-Paque Premium | GE Healthcare | 17-5442-02 | P=1.077, density gradient medium |
GDNF | Peprotech | 450-10 | Glial derived neurotrophic factor |
GlutaMAX | Invitrogen | 21051024 | 100 × Glutamine stock solution |
Ham's-F12 | Gibco | 11765-054 | |
HBSS | Invitrogen | 14175079 | Balanced salt solution |
Human leukemia inhibitory factor | Millpore | LIF1010 | |
Human recombinant SCF | Peprotech | 300-07-100UG | |
IGF-1 | Peprotech | 100-11-100UG | Human insulin-like growth factor |
IL-3 | Peprotech | 200-03-10UG | Human interleukin 3 |
IMDM | Gibco | 215056-023 | Iscove's modified Dulbecco's medium |
Insulin | Roche | 12585014 | |
ITS-X | Invitrogen | 51500-056 | Insulin-transferrin-selenium-X supplement |
Knockout serum replacement | Gibco | 10828028 | Serum free basal medium |
Laminin | Roche | 11243217001 | |
Microsyringe | Hamilton | 7653-01 | |
N2 supplement | Invitrogen | 17502048 | |
NEAA | Invitrogen | 11140050 | Non-essential amino acid |
Neurobasal | Gibco | 10888 | Basic medium |
PDL | Sigma-Aldrich | P7280 | Poly-D-lysine |
SAG1 | Enzo | ALX-270-426-M01 | |
SB431542 | Gene Operation | 04-0010-10mg | Store from light at -20℃ |
Sendai virus | Life Technologies | MAN0009378 | |
Sucrose | baiaoshengke | ||
TGFβⅢ | Peprotech | 100-36E | Transforming growth factor βⅢ |
Transferrin | R&D Systems | 2914-HT-100G | |
Triton X 100 | baiaoshengke | Nonionic surfactant | |
Trypan blue | Gibco | T10282 | |
Xylazine | Sigma-Aldrich | X1126 |