A protocol is presented using synthetic biology techniques to synthesize a set of bacterial biosensors for the analysis of gunshot residue, and to test the functioning of the devices for their intended use using fluorescence spectroscopy.
MicRoboCop is a biosensor that has been designed for a unique application in forensic chemistry. MicRoboCop is a system made up of three devices that, when used together, can indicate the presence of gunshot residue (GSR) by producing a fluorescence signal in the presence of three key analytes (antimony, lead, and organic components of GSR). The protocol describes the synthesis of the biosensors using Escherichia coli (E. coli), and the analytical chemistry methods used to evaluate the selectivity and sensitivity of the sensors. The functioning of the system is demonstrated by using GSR collected from the inside of a spent cartridge casing. Once prepared, the biosensors can be stored until needed and can be used as a test for these key analytes. A positive response from all three analytes provides a presumptive positive test for GSR, while each individual device has applications for detecting the analytes in other samples (e.g., a detector for lead contamination in drinking water). The main limitation of the system is the time required for a positive signal; future work may involve studying different organisms to optimize the response time.
A biosensor is any analytical device that uses biological components (such as proteins, nucleic acids, or whole organisms) that produce a response that can be used for the detection of a chemical substance or analyte. As an example, the coal mining industry used a biosensor for much of the 20th century to detect the presence of toxic mine gases: the canary in the coal mine1. The biological organism's (canary's) response (death or distress) to a chemical analyte (carbon monoxide) was observed by the miners in order to protect the workers. In a more modern and sophisticated example, bacteria can be altered using synthetic biology techniques to respond to the presence of a certain chemical analyte by exhibiting a specific response, such as the expression of a fluorescent protein.
Synthetic biology is a broad term that refers to the construction of biological devices and systems that do not exist naturally, or the re-design of existing biological systems for a specific purpose2. Synthetic biology is distinguished from genetic engineering by a standard methodology and the existence of standardized parts (standard synthetic biology genetic elements) that can be used to synthesize devices and systems. A part is introduced into the genome of a device, an organism such as a bacterium, to express a certain trait that will serve as an indication of function. For example, in many synthetic devices, the expression of a fluorescent protein is introduced into a single celled organism as a reporter protein. Multiple devices can be combined into a system. The genomes of microorganisms such as bacteria are easy to manipulate in this manner. Numerous examples of biosensors specific to a wide range of chemical analytes have been reported in the literature over the last decade3,4.
In this work, the MicRoboCop system is presented as an example of a biosensor designed using synthetic biology techniques with novel applications in forensic and environmental chemistry. MicRoboCop is a system of three separate devices that, when combined, will allow Escherichia coli to express red fluorescent protein (RFP) in the presence of gunshot residue (GSR) that has been collected from a person’s hands or a surface. Each of the three devices responds to a specific chemical analyte that is known to be a component of GSR5. The three analytes to which the system responds are I. 2,4,6-trinitrotoluene (TNT) and related compounds, II. lead (in the form of lead ions), and III. antimony (also in the form of ions).
GSR consists of many different chemical substances, but the three usually used to identify a residue as GSR are barium, lead, and antimony5. The standard evidentiary test for the identification of GSR is to use scanning electron microscopy (SEM) with energy dispersive X-ray fluorescence (EDX)5. SEM-EDX allows analysts to identify the unique morphology and the elemental components of GSR. Presently, there are few widely used binary presumptive tests available. One recently published presumptive test uses ion-mobility spectroscopy (IMS), which is specialized equipment that might not be available in many labs6. There are also a few color “spot” tests that can be used, though they are typically used for distance determination or for GSR identification on bullet holes and wounds5. Additionally, there has been some limited attention in the literature to electrochemical tests for GSR that employ voltammetric analysis, which has the advantage of potentially being field portable, or anodic stripping voltammetry, which is an extremely sensitive method for metallic elements7. There is very little mention in the literature of biosensors designed specifically for the purpose of detecting GSR, though some biosensors for other forensic applications have been published8.
The biological elements for each device in the MicRoboCop system, and the plasmid construction, are illustrated in Figure 1. The curved arrow in Figure 1b represents the promoter region that is activated in the presence of the analyte, the oval is the ribosomal binding site that allows translation of the reporter protein, the gray box labeled RFP is the gene that expresses red fluorescent protein, and the red octagon is the transcription termination site. All three devices will be used together as a system to detect GSR. Each device with a specific promoter (SbRFP, PbRFP, and TNT-RFP) will be incubated with the sample that is being tested and fluorescence of RFP will be measured. RFP will only be expressed if the appropriate chemical analyte is present and activates the promoter region. Three devices that respond to some of the chemical substances present in GSR have been designed and are presented in this work.
The promoters used in the three MicRoboCop devices are an arsenic and antimony sensitive promoter, SbRFP9,10, a lead sensitive promoter, PbRFP11,12 and a TNT sensitive promoter, TNT-RFP13. Because a search in the literature revealed no promoter designed to respond to barium, the TNT promoter was selected instead since this promoter is sensitive to a number of structurally related compounds (in particular, 2,4-dinitrotoluene and dinitrobenzene) that are known to be a part of the organic compounds left behind in GSR. This promoter has successfully been used to specifically detect minute quantities of TNT and 2,4-dinitrotoluene (2,4-DNT) in buried land mines13. Using the three devices together as a system, a positive test for GSR will produce fluorescence in all three devices. A fluorescence signal in only one or two devices will indicate another environmental source of the analyte(s) or in the case of the TNT promoter, activation by a compound that is not an organic compound left behind in GSR. By using all three devices together, the possibility of a false positive results due to environmental sources is minimized. Lead-free ammunition, which is gaining in popularity, still represents only about 5% of ammunition sales in the United States; hence, false negative results due to the absence of lead may be a possibility but there is still utility in a sensor that uses lead as a marker for GSR14. In addition to this specific forensic application, each device can be used separately for purposes of detecting environmental contaminants.
The protocols presented include the synthetic biology techniques used to create the devices (sensor bacteria) and the analytical techniques to check the function of the devices and analyze the fluorescence signals obtained. The protocol also includes collection of forensic evidence in the form of hand wiping to collect GSR from the hands of a suspect or swabbing to collect GSR from a surface. Results from the lead sensor device are presented as example results, along with a demonstration of a positive test for GSR using a spent cartridge casing.
NOTE: Synthesis of E. coli expressing RFP is presented.
1. Preparation of plasmid DNA from E. coli
2. Restriction enzyme digestion
3. Ligation and transformation
4. Colony PCR
5. DNA Sequencing
6. Preparation of E. coli cultures
7. Titrating E. coli to check function of device
NOTE: Once the sensors have been titrated to check function, this step does not need to be repeated. A positive control in the form of addition of lead, antimony, and 2,4-DNT or 1,3-dinitrobenzene (1,3-DNB) can check the function of the devices for each use without the need for the full titration.
8. Using E. coli as chemical sensor for GSR
9. Fluorescence analysis using portable spectrometer (see Table of Materials)
10. Fluorescence analysis using 96-well plate reader (see Table of Materials)
11. Data analysis
Fluorescence spectra for the RFP variant used in this work are shown in Figure 2. These data are from the PbRFP device as it responds to lead and the TNT-RFP device as it responds to two analytes, 2,4-DNT and 1,3-DNB. This figure shows the spectrum of a negative control (no analyte added), and the spectra at two different levels of analyte added. The maximum fluorescence signal for the RFP variant used was observed at 575 nm (excitation wavelength 500 nm). The data in Figure 3 are representative of a single titration experiment (hence no error bars are included) of the PbRFP device, titrated as in step 7 of protocol. Figure 3a shows data collected from the portable spectrometer, while Figure 3b shows data collected from the fluorimeter (from the same set of solutions). There is a general trend of increasing fluorescence as the concentration of metal increases. It is worth noting that at high concentrations, greater than about 800 ppb, the response drops off due to the toxicity of the metal at such a high concentration. This maximum response level may vary depending on the analyte used. Our previous work with the SbRFP showed that the bacteria could tolerate higher levels (at least up to 1,000 ppb) of arsenic and antimony10. Literature on levels of these analytes collected from hand swabs indicates that these levels of lead and antimony are consistent with what might be collected from a hand swab15. Additionally, the results presented in Figure 4 demonstrate that the bacteria can tolerate the amounts of analytes present in a cartridge case swab without cell death, which will be significantly higher than what is collected from a hand swab.
Using the calculated S/N values for these data, the lowest detectable level of lead was 12 ppb (detectable as defined by an S/N greater than 3). In contrast, the S/N for the portable spectrometer data is only 2 at the highest level tested. However, the trend of increasing fluorescence with increasing analyte concentration is still clearly noted.
Figure 4a shows a positive test for GSR. To obtain this result, ethanol swabs were collected from the inside of a spent .40 caliber cartridge casing and added to the three sensor bacteria, as in step 8 of the protocol. This figure also shows a positive control (bacteria that constitutively expresses RFP) and a negative control in the form of the SbRFP device with no analyte added. The cartridge case swabs were used as proof-of-principle results. In future work, hand swabs will be collected from persons who are known to have fired a gun to show that the sensors are responsive to hand swabs as well.
COMPONENT | 20 μL REACTION |
10X T4 DNA Ligase Buffer | 2 μL |
Plasmid DNA (3 kb) | 3 μL |
Promoter DNA (0.7kb) | 10 μL |
Nuclease-free water | 4 μL |
T4 DNA Ligase | 1 μL |
Table 1. Reaction mixture for ligation, protocol step 3.1.1.
Component | 25 μL reaction |
10 µM Forward Primer | 0.5 µL |
10 µM Reverse Primer | 0.5 µL |
OneTaq 2X Master Mix | 12.5 µL |
Nuclease-free water | 11 µL |
Table 2. Reaction mixtures for colony PCR, protocol step 4.1.
STEP | TEMP | TIME |
Initial Denaturation | 94 °C | 30 s |
30 Cycles | 94 °C | 30 s |
55 °C | 45 s | |
68 °C | 60 s | |
Final Extension | 68 °C | 5 min |
Hold | 4 °C |
Table 3. PCR thermocycling parameters for protocol step 4.3.
Tube ID | Bacteria | Concentration of analyte solution added (ppm) | Metal added | Volume of analyte solution added to 2,000 µL broth | [analyte], ppb |
1 | PbRFP | 10 | Pb | 2.5 | 12 |
2 | PbRFP | 10 | Pb | 75 | 361 |
3 | PbRFP | 10 | Pb | 150 | 698 |
4 | PbRFP | 0 | none | 0 | 0 |
5 | RFP neg | 10 | Pb | 10 | 50 |
6 | RFP pos | 10 | Pb | 10 | 50 |
Table 4. General experiment set up for titration of biosensors, protocol step 7.2.
Figure 1. Biological elements of the MicRoboCop devices. (a) Diagram of the general device for MicRoboCop in a plasmid with an ampicillin resistance gene. (b) Diagram of each device that is combined to create the MicRoboCop system. Please click here to view a larger version of this figure.
Figure 2. Fluorescence spectra of PbRFP and TNT-RFP bacteria in the presence and absence of analyte. Data collected on fluorimeter. (a) Fluorescence spectra of PbRFP bacteria in the presence and absence of analyte (Pb). (b) Fluorescence spectra of TNT-RFP bacteria in the presence and absence of two analytes (2,4-DNT and 1,3-DNB). Please click here to view a larger version of this figure.
Figure 3. Comparison of the portable spectrometer system and fluorimeter for detection of the fluorescence spectra of PbRFP bacteria in the presence and absence of analyte (lead). (a) Lead titration data for PbRFP sensor bacteria collected on portable spectrometer system. (b) Lead titration data (same samples) for PbRFP sensor bacteria collected on fluorimeter. Please click here to view a larger version of this figure.
Figure 4. Ethanol swabs taken from the inside of a .40 caliber spent pistol cartridge to show the response of the three devices to GSR. S/N for all signals was greater than 3, indicating a positive test for GSR. Please click here to view a larger version of this figure.
Modifications and troubleshooting
The experiment described in Table 4 can be modified in any way appropriate to the sensors that have been designed. The most important aspect of a chemical sensor is to evaluate its sensitivity and specificity. It is beneficial to ensure that a wide range of concentrations of the analyte is analyzed to determine the useful analytical range of the sensor. It is also worth determining a maximum level of analyte for the cells. Because the analytes used in this study are toxic metals (Pb and Sb) or organic compounds in a methanol solution (for the TNT derivatives), there is an upper level at which cell death due to the toxicity of the analyte or solution will occur (generally higher than 500 – 1,000 ppb for the experiments conducted thus far).
Limitations of the technique
The results presented in this work are qualitative in nature but are meant to demonstrate the quantitative capabilities of RFP modified E. coli. The sensitivity of the sensor can vary significantly between cultured batches depending on the density of the cells in the broth. If quantitative results are required, the cell concentration should be estimated by measuring the optical density of the liquid cultures before analysis. If the optical density of the cultures is determined, then the cells can be diluted appropriately to reduce variability between experiments. As a presumptive test for the desired analytes, however, the qualitative “present/not present” response is acceptable for the applications discussed here. The life span of the cells on the agar plate should also be noted – previous work has indicated that the plates can be stored in the refrigerator for up to 2 weeks, but the devices do not work very well towards the end of that time frame and beyond.
Another consideration is the choice of equipment used to analyze the fluorescence signal. Using a research grade spectrophotometer with a 96-well plate reader allows selection of exact excitation and emission wavelengths, which can increase sensitivity. Using this system, the results of up to 96 experiments can be collected simultaneously. RFP fluorescence may also be analyzed using a portable spectrometer system. Portable instruments typically allow selected excitation bands, which may or may not coincide with the excitation maxima of the RFP variant being used. However, as long as the excitation wavelength is within a reasonable range of the excitation maxima, the portable instrument will generally be serviceable (though with a loss in sensitivity). The cost of the portable systems is significantly less than the research grade spectrophotometer, and portability may certainly be an advantage. Based on the potential application of the bacteria, the analyst can decide whether or not the additional cost and loss of portability with the spectrophotometer system is justified.
Significance with respect to existing methods
The three-part MicRoboCop system described in this work is intended to be used as a qualitative, presumptive test for the presence of GSR. Currently, the “gold standard” evidentiary test for GSR requires expert analysis by SEM-EDX. SEM-EDX equipment is expensive and typically operated by highly specialized analysts. Additionally, GSR evidence is highly variable in forensic casework and many variables contribute to the deposition of GSR on hands and surfaces16. A presumptive test for GSR may be useful to investigators as providing probable cause for a search of person or property. When compared to electrochemical tests or tests such as ion mobility spectroscopy, this method offers simple, readily available instrumentation to which most analytical laboratories should have access.
Other applications
The devices described in this manuscript are designed to be combined into a three-part system for the presumptive identification of GSR. However, each device in the MicRoboCop system (SbRFP, PbRFP, and TNT-RFP) can also be used individually to detect chemical contamination in food, water, or environmental samples. Previous work has shown that the TNT-RFP device can be used as an in situ sensor for land mines13,17. Results presented here and in our previous work10 have shown that the SbRFP and PbRFP devices can detect concentrations low enough to rival more expensive and sophisticated equipment such as inductively coupled plasma atomic emission spectroscopy (ICP-AES) and atomic absorption spectroscopy (AAS). The SbRFP sensor is sensitive to arsenic as well as antimony. These devices may provide a low-cost option for analysis of toxic heavy metal contamination.
The synthetic biology protocol for preparing the E. coli presented here is applicable to any system that uses standard synthetic biology genetic parts to synthesize E. coli that express RFP. The analytical method is applicable to any system that expresses RFP, and so can be used to analyze any bacterial biosensor system that has been created using synthetic biology methods.
The authors have nothing to disclose.
The authors wish to acknowledge the students at Longwood University in BIOL 324 (Genetics) and the students in CHEM 403 (Advanced Chemical Laboratory Problem Solving) who were involved in the initial preparation and testing of the antimony and lead biosensors. The idea for MicRoboCop was conceived at the GCAT SynBIO workshop (summer 2014), which is funded by NSF and Howard Hughes Medical Institute and hosted by the University of Maryland Baltimore County. The authors also acknowledge funding received from Longwood University’s Cook-Cole College of Arts and Sciences and the GCAT SynBio Alumni Grant.
1,3-dinitrobenzene, 97% | Aldrich | D194255-25G | |
2,4-dinitrotoluene, 97% | Aldrich | 101397-5G | |
Agar | Fisher Scientific | BP1423-500 | |
Ampicillin | Fisher Scientific | BP1760-5 | |
Antimony, Reference Standard Solution (1000ppm ±1%/Certified) | Fisher Scientific | SA450-100 | Standard in dilute HNO3 |
Cut Smart Buffer | New England BioLabs | B7204S | |
Duplex Buffer | Integrated DNA Technologies | 11-01-03-00 | |
EcoRI-HF Restriction Enzyme | New England BioLabs | R3101S | |
Ethanol, HPLC grade, denatured | Acros Organics | AC611050040 | Solvents do not need to be HPLC grade, ACS or reagent grade will work. |
Eurofins Genomics SimpleSeq DNA Sequencing Kits | Eurofins Genomics | SimpleSeq Kit Standard | |
Forward primer for colony PCR | Integrated DNA Technologies | 5’- GCCGCTTGAATTCGTCATATAT-3’ | |
Forward primer for DNA sequencing | Integrated DNA Technologies | 5’- GTAAAACGACGGCCAGTG-3’ | |
IBI Science High Speed Plasmid Mini-kit | IBI Scientific | IB47101 | |
LB Broth, Miller | Fisher Scientific | BP1426-500 | |
Lead, Reference Standard Solution (1000ppm ±1%/Certified) | Fisher Scientific | SL21-100 | Standard in dilute HNO3 |
LeadOff Disposable Cleaning and Decon Wipes | Hygenall | 45NRCN | Sold in canisters or individually wrapped, any alcohol based wipe will work. |
Methanol, HPLC grade | Fisher Scientific | A452-4 | Solvents do not need to be HPLC grade, ACS or reagent grade will work. |
NEB 5-alpha Competent E. coli cells | New England BioLabs | C2987I | |
NheI-HF Restriction Enzyme | New England BioLabs | R3131S | |
Nuclease free water | New England BioLabs | B1500S | |
OneTaq 2X Master Mix with Standard Buffer | New England BioLabs | M0482S | |
Plasmids from the registry of standard biological parts used for synthetic biology | Registry of Standard Biological Parts | http://parts.igem.org/Main_Page | |
Promoter Sequences | Integrated DNA Technologies | Sb promoter: 5’-GCATGAATTCAGTCAT ATATGTTTTTGACTTATCCGCTTCGAAGAGAG AGACACTACCTGCAACAATCGCTAGCGCAT-3’ 3’-CGTACTTAAGCTCACTATATACAAAAACT GAATAGGCGAAGCTTCTCTCTCTGTGATGGAC GTTGTTAGCGATCGCGTA-5’ Pb promoter: 5’-GCATGAATTCGTCTTG ACTCTATAGTAACTAAGGGTGTATAATCGGCA ACGCGAGCTAGCGCAT-3’ 3’-CGTACTTAAGCAGAACTGAGATATCATTG ATCTCCCACATCTTAGCCGTTGCGCTGCGATCGCGTA-5’ TNT promoter: 5’GCATTCTAGATCAATT TATTTGAACAAGGCGGTCAATTCTCTTCGATT TTATCTCTCGTAAAAAAACGTGATACTCATCA CATCGACGAAACAACGTCACTTATACAAAAAT CACCTGCGAGAGATTAATTGAATTCGCAT3’ 3’CGTAAGATCTAGTTAAATAAACTTGTTCCG CCAGTTAAGAGAAGCTAAAATAGAGAGCATTT TTTTGCACTATGAGTAGTGTAGCTGCTTTGTT GCAGTGAATATGTTTTTAGTGGACGCTCTCTA ATTAACTTAAGCGTA5’ |
|
Reverse primer for colony PCR | Integrated DNA Technologies | 5’- GCCGCTTGAATTCGTCTAGACT- 3’ | |
Reverse primer for DNA sequencing | Integrated DNA Technologies | 5’- GGAAACAGCTATGACCATG-3’ | |
T4 DNA Ligase | New England BioLabs | M0202S |