This protocol describes a highly sensitive and high throughput neutrophil extracellular trap (NET) assay for the semi-automated quantification of ex vivo NET formation by immunofluorescence three-dimensional confocal microscopy. This protocol can be used to evaluate NET formation and degradation after different stimuli and can be used to study potential NET-targeted therapies.
Neutrophil extracellular traps (NETs) are immunogenic extracellular DNA structures that can be released by neutrophils upon a wide variety of triggers. NETs have been demonstrated to serve as an important host defense mechanism that traps and kills microorganisms. On the other hand, they have been implicated in diverse systemic autoimmune diseases. NETs are immunogenic and toxic structures that contain a pool of relevant autoantigens including anti-neutrophil cytoplasmic antibodies (ANCA)-associated vasculitis (AAV) and systemic lupus erythematosus (SLE). Different forms of NETs can be induced depending on the stimulus. The amount of NETs can be quantified using different techniques including measuring DNA release in supernatants, measuring DNA-complexed with NET-molecules like myeloperoxidase (MPO) or neutrophil elastase (NE), measuring the presence of citrullinated histones by fluorescence microscopy, or flow cytometric detection of NET-components which all have different features regarding their specificity, sensitivity, objectivity, and quantity. Here is a protocol to quantify ex vivo NET formation in a highly-sensitive, high-throughput manner by using three-dimensional immunofluorescence confocal microscopy. This protocol can be applied to address various research questions about NET formation and degradation in health and disease.
The formation of neutrophil extracellular traps (NETs) is the process in which neutrophils release their DNA in an extracellular three-dimensional (3D) web like structure, complexed with a wide range of antimicrobial and dangerous molecules, granular and cytoplasmic enzymes, peptides and proteins. These immunogenic and toxic structures have an important physiological role in the innate immune defense of healthy individuals by trapping and killing infectious pathogens1. However, they have also been demonstrated to be involved in thrombosis2 and various systemic autoimmune diseases, including anti-neutrophil cytoplasmic antibodies (ANCA)-associated vasculitis (AAV)3, systemic lupus erythematosus (SLE)4,5, antiphospholipid syndrome (APS)2,6, rheumatoid arthritis (RA), psoriasis, and gout7,8,9.
In vitro NET formation has been widely studied with the chemical compound phorbol 12-myristate 13-acetate (PMA), which induces massive NET formation. However most physiological stimuli induce much lower levels of NET formation10. To study NET-triggers in, for example, an autoimmune disease setting, a standardized, sensitive, high-throughput quantitative assay is needed to detect and quantify NET formation. Quantification of NETs has proven to be challenging and is currently performed by different methods, each with their own advantages and limitations11. A commonly used method is the detection of DNA in the supernatants12, which is objective but does not discriminate between the origin of the DNA (apoptotic, necrotic, NETs), and therefore is not very specific for NETs. Secondly, enzyme-linked immunosorbent assays (ELISAs) of DNA-complexed with NET-specific proteins, for example, myeloperoxidase (MPO) or neutrophil elastase (NE), are a more specific approach to detect NETs and were demonstrated to correlate well with citrullinated histone-3 (CitH3) positive NETs13. However, it is not known whether this method is sensitive enough to pick up all NETs (e.g., MPO, NE, and CitH3 negative NETs). A third approach is immunofluorescence microscopy that is used to detect co-localization of NET-associated molecules (NE, MPO, CitH3) with extracellular DNA to quantify NETs. This method is generally specific for NETs, but it cannot be applied as a high-throughput method and is not objective due to observer bias. Additionally, this method does not take into account MPO-, NE-, CitH3-negative NETs that are frequently present depending on the used NET-trigger14,15. Flow cytometry approaches detect NETs through a changed forward/sideward scatter (FSC/SSC) indicating swelling of the nucleus in NET-ting neutrophils16. This method does not take into account the different forms of NET formation that have been identified, which might not involve swelling of the nucleus, such as vital NET formation17. Lastly, immunofluorescence confocal microscopy has been applied to visualize and quantify NET formation by directly staining extracellular DNA with a cell-impermeable dye that stains extracellular DNA12,18. Generally, 5 to 10 high-power fields are manually picked and assessed, which covers 1-5% of each well of a 96-well plate11,17. Manual selection of images is not always objective, prone to bias and not attractive for high-throughput analysis. An automated, high-throughput NET quantification assay was recently developed, which imaged 11% of the well in a 3D manner covering 13 µm through Z-stacked immunofluorescence confocal microscopy, thereby leading to a highly sensitive technique to assess NETs compared to the conventional methods10. The current report describes the most recent protocol to quantify NET formation through an automated, highly sensitive assay using 3D confocal microscopy, which achieves a total imaged area of 45% of each well and covers 27 µm through Z-stacks. This protocol is suitable to quantify, with a high sensitivity, low levels of NET formation in an objective and unbiased manner.
All patients and healthy controls consented to participate in the LUMC biobank. Both biobanking studies were approved by the LUMC ethical committee.
1. Isolation of Healthy Neutrophils
2. Red Fluorescent Cell Labelling of Neutrophils
3. Induction of Neutrophil Extracellular Trap Formation
4. NET Visualization with 3D High-content, High-resolution Immunofluorescence Confocal Microscopy
5. Analysis of NET Formation
Neutrophil extracellular trap (NET) formation is quantified in a 3D manner by quantifying stained extracellular DNA over 10 Z-stacks with 3 µm distance starting off at the focal plane in each well. By measuring the cumulative area, the sensitivity of the assay increases (Figure 1A). The isolated neutrophils have a mean purity of 98.7% with standard deviation (SD) of 1.10% measured in 14 different samples from different isolations. The mean percentage of red blood cells is 1.04% ± 1.1% SD and the mean percentage of monocytes is 0.085% ± 0.17% SD (data not shown). The total area of stained neutrophils imaged are quantified only in the focal plane in each well, which correlate significantly with the total neutrophil count in each well with a Pearson correlation coefficient of 0.99 (95% confidence interval [CI] 0.985-0.997, p < 0.0001) (Figure 1B). The representative outcome of quantification of NET formation in neutrophils stimulated with 10% sera of AAV patients or medium (MED) as a negative control, expressed as cumulative stained extracellular DNA area over 10 Z-stacks per imaged neutrophil (Figure 1C). Snapshots of representative images of unstimulated neutrophils (Figure 2A) and of NETs in AAV-stimulated neutrophils (Figure 2B) are shown.
Figure 1: Quantification of NET formation by measuring extracellular DNA and neutrophil count. (A) Area is cumulatively quantified over the 10 Z-stacks for each well for unstimulated neutrophils (MED) and for neutrophils stimulated with 10% serum of ANCA-associated vasculitis (AAV) patients (n = 4) quantified with an image processing program. Each stimulus was tested in triplicate, each point represents the median value. (B) Red fluorescent labelled cell area and cell count were quantified in the focal plane of each well by the image processing program (R2 = 0.99, p < 0.0001). (C) NET formation is expressed as cumulative area per imaged neutrophil (cell area). The mean ± standard error of the mean (SEM) of each triplicate is plotted per stimulus. Please click here to view a larger version of this figure.
Figure 2: Snapshots of NET quantification assay. Fluorescent labelled neutrophils are shown in red, and stained extracellular DNA is shown in green. 10x Plan Apo Lambda objective. (A) Unstimulated neutrophils. (B) Neutrophils stimulated with AAV serum. Please click here to view a larger version of this figure.
The most critical part of this assay is the need to use freshly isolated neutrophils for each experiment because neutrophils are short-lived and die when frozen. This requires a healthy donor each time, which could implicate some variations due to donor characteristics. One of these variations is the activation status of the neutrophils. Neutrophils could be activated already in vivo prior to isolation. In addition, neutrophils can be activated throughout the isolation steps notably during lysis of erythrocytes, therefore an experienced handler of neutrophils is required to minimize the activation of neutrophils. In general, isolation of neutrophils should be performed as soon as possible after blood drawing and the experiment should not be paused to avoid excessive spontaneous activation. Secondly, rough handling of neutrophils should be avoided. As such, the notable advantage of the described protocol is the minimal pipetting interventions once neutrophils are seeded in a 96-well plate. Importantly, the activation status of the neutrophils is best assessed in the unstimulated condition, in which this assay can sensitively detect low levels of NET formation. Another factor that could influence the assay is the use of FCS in the medium. The percentage of FCS has been decreased from 10% to 2% to avoid the possible suppression of NET formation by antioxidant activity19,20 or the possible activation of the neutrophils despite heat inactivation. Culture without FCS or with the use different types of media has not been tried. An unstimulated or medium control is always taken along when performing the assay to have an indication of the background signal (e.g., activation status of the neutrophils). The fold increase for each stimulus compared to the unstimulated sample is displayed to achieve consistent results over different experiments using the same stimulus.
An important factor for a possible high background is staining of extracellular DNA that is unrelated to the process of NET formation. The present assay attempts to reduce this by removing the extracellular DNA staining immediately after the short incubation period of 15 min and by analyzing the plate directly after fixation. Therefore, it is essential to use an advanced confocal microscope that has enough speed and analytical power to capture the 96-well plate within 1 to 2 h. Automated setting of the exposure time and focus is recommended. As such, the microscope setting can vary between each sample and experiment with respect to the color intensity threshold which is necessary for overall optimal picture quality. The latter influences the eventual capability to correctly quantify neutrophils and NETs and the optimal setting should therefore be confirmed by using multiple control samples (e.g., serum of healthy controls). During the analysis of captured images, the use of a pixel threshold and size threshold in the analysis program allows for a better selection of NET formation.
Extracellular DNA derived from NET formation can be the result of distinct death pathways, including NETosis, necroptosis, pyroptosis, ferroptosis or even non-lytic process of vital NET formation1. As such, a limitation of the present assay is that by staining only for extracellular DNA there is no differentiation possible between NET formation and other relevant cell death pathways. It is possible to achieve this by using either selective inhibitors of distinct death pathways to discriminate between the different forms underpinning NET formation or confirm by separate immunostainings the presence of specific NET markers, such as citH3 and NE, co-localized with DNA. The co-localization of extracellular DNA with citH3 and NE has recently been confirmed for this assay10. The advantage of avoiding NET specific markers in this assay, allows to assess all forms of NET formation leading to the extrusion of DNA by neutrophils as complete and as objective as possible with the potential of high-throughput screening. The applicability of this protocol has been shown in studying low level NET induction mediated by immune complexes in auto-immune disease in which the ability to detect qualitative and quantitative differences might be more important than the type of process involved10,21,22. Illustrating that this novel NET quantification assay can be of added value for different researchers to investigate various aspects of NET formation. Small adjustments to the assay are easily implemented: adjustment of the stimulation period, the use of a favorite NET marker to focus on one specific death pathway leading to NET formation, the use of a different magnification or the use of different NET criteria in the quantification and analysis.
In conclusion, the protocol provided is a highly-sensitive broadly applicable assay for the semi-automated quantification of NET formation for the evaluation of ex vivo induction of NETs upon different stimuli.
The authors have nothing to disclose.
The work of Eline J. Arends and Y.K. Onno Teng is supported by the Dutch Kidney Foundation (17OKG04), Clinical Fellowship from the Netherlands Organization for Scientific Research (90713460). Laura S. van Dam's work is supported by the Foundation for Research in Rheumatology (FOREUM).
Aqua Sterile H2O | B. Braun, Melsungen, Germany | 12604052 | |
Fetal bovine serum (FCS) | Bodinco, Alkmaar, The Netherlands | Used in high concentrations it could influcence NET formation | |
Ficoll 5,7% – amidotrizoaat 9% density 1,077 g / mL | LUMC, Leiden, The Netherlands | 97902861 | |
Immunofluorescence confocal microscope | Image Xpress Micro Confocal (Molecular Devices, Sunnyvale, CA, USA) | ||
Neutralization PBS (10x) | Gibco, Paisley, UK | 70011-036 | |
Penicillin / streptomycin (p/s) | Gibco, Paisley, UK | 15070063 | |
Phenol red free RPMI 1640 (1x) | Gibco, Paisley, UK | 11835-063 | Phenol red can interfere with the immunofluorescence signal |
Phosphate-buffered saline (PBS) | B. Braun, Melsungen, Germany | 174628062 | |
PKH26 2 uM Red fluorescent cell linker | Sigma Aldrich Saint-Louis, MO, USA | PKH26GL-1KT | PKH are patented fluorescent dyes and a cell labeling technology named after their discoverer Paul Karl Horan |
Program for scientific multidimensional images analysis | ImageJ, Research Services Branch, National Institute of Mental Health, Bethesda, Maryland, USA | ||
RPMI medium 1640 (1x) | Gibco, Paisley, UK | 52400-025 | |
Sytox green 5 mM Impermeable DNA dye | Gibco, Paisley, UK | 57020 | |
Trypan blue stain 0,4% | Sigma Aldrich, Germany | 17942E | |
96 well, black, flat bottom, tissue culture treated plate | Falcon, NY, USA | 353219 |