Aquí presentamos un método de tinción post-gel sensible, rápido y discriminatorio para la imagen de ARN etiquetados con aptámeros de mango de ARN I, II, III o IV, utilizando geles de electroforesis de gel de poliacrilamida (PAGE) nativos o desnaturalizantes. Después de ejecutar geles PAGE estándar, el ARN con etiqueta Mango se puede teñir fácilmente con TO1-Biotin y luego analizarse utilizando lectores de fluorescencia comúnmente disponibles.
Los geles nativos y desnaturalizantes de poliacrilamida se utilizan habitualmente para caracterizar la movilidad compleja de ribonucleoproteína (RNP) y medir el tamaño del ARN, respectivamente. Como muchas técnicas de imágenes de gel utilizan manchas inespecíficas o sondas de fluoróforo costosas, son altamente deseables metodologías sensibles, discriminatorias y económicas de imágenes de gel. Las secuencias de núcleo de Mango de ARN son pequeños motivos de secuencia (19-22 nt) que, cuando están cerrados por un tallo de ARN arbitrario, pueden ser simplemente y baratos anexados a un ARN de interés. Estas etiquetas de Mango se unen con alta afinidad y especificidad a un ligando de fluoróforo tiazol-naranja llamado TO1-Biotina, que se vuelve miles de veces más fluorescente al encuadernar. Aquí mostramos que Mango I, II, III y IV se puede utilizar para crear imágenes específicas de ARN en geles con alta sensibilidad. Tan solo 62,5 fmol de ARN en geles nativos y 125 fmol de ARN en geles desnaturalizantes se pueden detectar empapando geles en un tampón de imágenes que contiene potasio y 20 nM TO1-Biotina durante 30 min. Demostramos la especificidad del sistema etiquetado con Mango mediante la toma de imágenes de un ARN bacteriano 6S con etiqueta de Mango en el contexto de una mezcla compleja de ARN bacteriano total.
Mango es un sistema de etiquetado de ARN que consiste en un conjunto de cuatro pequeños aptámeros fluorescentes de ARN que se unen firmemente (unión nanomolar) a derivados simples del tiazol-naranja (TO1-Biotina, Figura 1A)1,2,3 . Tras la unión, la fluorescencia de este ligando se incrementa de 1.000 a 4.000 veces dependiendo del aptámero específico. El alto brillo del sistema Mango, que para Mango III supera al de la proteína fluorescente verde mejorada (eGFP), combinada con la afinidad de unión nanomolar de los aptámeros de mango de ARN, permite su uso tanto en la imagen como en la purificación del ARN complejos2,4.
Las estructuras de rayosX de Mango I 5, II6y III7 se han determinado a alta resolución, y los tres aptámeros utilizan un ARN cuádruplex para unir TO1-Biotina (Figura1B–D). Los núcleos compactos de los tres aptámeros están aislados de la secuencia de ARN externa a través de motivos de adaptador compactos. Mango I y II utilizan un adaptador de bucle flexible similar a GNRA para conectar sus núcleos de mango a un dúplex de ARN arbitrario (Figura1B,C). Por el contrario, Mango III utiliza un motivo rígido triplex para conectar su núcleo a una hélice de ARN arbitraria (Figura1D,residuos púrpuras), mientras que la estructura de Mango IV no se conoce actualmente. Como el núcleo de unión de ligandos de cada uno de estos aptámeros está separado de la secuencia de ARN externa por estos adaptadores helicoidales, parece probable que todos puedan ser simplemente incorporados en una variedad de ARN. El ARN regulador 6S bacteriano (Mango I), componentes del espliceosoma de levadura (Mango I), y el ARN 5S humano, ARN U6, y un escalonado C/D (Mango II y IV) han sido etiquetados con éxito en esta moda2,8, lo que sugiere que muchos LOS ARN biológicos se pueden etiquetar utilizando el sistema aptamer de ARN Mango.
Los geles nativos y desnaturalizantes se utilizan comúnmente para estudiar los ARN. Los geles dedesnaturalización se utilizan a menudo para juzgar el tamaño del ARN o el procesamiento de ARN, pero normalmente, en el caso de una mancha del norte, por ejemplo, requieren varios pasos lentos y secuenciales para generar una imagen. Mientras que otros aptámeros fluorogénicos de ARN, como el ARN Spinach y el Brócoli, se han utilizado con éxito para imágenes en gel9,ningún sistema de aptámeros fluorogénicos hasta la fecha posee el alto brillo y la afinidad del sistema Mango, por lo que es de considerable interés para investigar las habilidades de rayos de gel de Mango. En este estudio, nos preguntamos si el sistema de mango de ARN podría simplemente extenderse a las imágenes de gel, ya que las longitudes de onda de excitación y emisión de TO1-Biotina (510 nm y 535 nm, respectivamente) son apropiadas para la toma de imágenes en el canal eGFP común a la mayoría de los fluorescentes instrumentación de escanado en gel.
El protocolo de tinción post-gel presentado aquí proporciona una manera rápida de detectar específicamente moléculas de ARN etiquetadas con Mango en geles de electroforesis de gel de poliacrilamida (PAGE) nativos y desnaturalizantes. Este método de tinción consiste en remojar geles en un tampón que contiene potasio y TO1-Biotina. Los aptámeros de mango de ARN son basados en G-quadruplex y se requiere potasio para estabilizar dichas estructuras. Utilizando el ARN transcrito a partir de plantillas mínimas de ADN de codificación de Mango (ver la sección de protocolo), simplemente podemos detectar tan poco como 62.5 fmol de ARN en geles nativos y 125 fmol de ARN en geles desnaturalizantes, utilizando un protocolo de tinción directa. A diferencia de las manchas comunes de ácido nucleico no específico (ver Tabla de Materiales,referida a SG a partir de aquí), podemos identificar claramente el ARN etiquetado con Mango incluso cuando hay altas concentraciones de ARN total sin etiquetar en la muestra.
Una ventaja significativa de la etiqueta fluorescente Mango es que una sola etiqueta se puede utilizar de múltiples maneras. El alto brillo y la afinidad de estos aptámeros los hacen útiles no sólo para la visualización celular 2, sino también para el ARN in vitro o la purificación RNP4. Por lo tanto, la imagen en gel amplía la versatilidad de la etiqueta Mango de una manera sencilla. La sensibilidad por imágenes de gel de mango es ligeramen…
The authors have nothing to disclose.
Los autores agradecen a Razvan Cojocaru y Amir Abdolahzadeh por su asistencia técnica y a Lena Dolgosheina por la corrección del manuscrito. La financiación fue proporcionada para este proyecto por una subvención operativa del Consejo Canadiense de Ciencias Naturales e Ingeniería (NSERC) a P.J.U.
0.8mm Thick Comb 14 Wells for 30 mL PAGE gels | LabRepCo | 11956042 | |
101-1000 µL tips | Fisher | 02-707-511 | |
20-200 µL low retention tips | Fisher Scientific | 02-717-143 | |
Acrylamide:N,N'-methylenebisacrylamide (40% 19:1) | Bioreagents | BP1406-1 | Acute toxicity |
Acrylamide:N,N'-methylenebisacrylamide (40% 29:1) | Fisher | BP1408-1 | Acute toxicity |
Agar | Anachemia | 02116-380 | |
Aluminium backed TLC plate | Sigma-Aldrich | 1164840001 | |
Amersham Imager 600 | GE Healthcare Lifesciences | 29083461 | |
Ammonium Persulfate | Biorad | 161-0700 | Harmful |
BL21 cells | NEB | C2527H | |
Boric Acid | ACP | B-2940 | |
Bromophenol Blue sodium salt | Sigma | B8026-25G | |
Chloloform | ACP | C3300 | |
Dithiothreitol | Sigma Aldrich Alcohols | D0632-5G | |
DNase I | ThermoFisher | EN0525 | |
EDTA Disodium Salt | ACP | E-4320 | |
Ethanol | Commerial | P016EAAN | |
Flat Gel Loading tips | Costar | CS004854 | |
Formamide 99% | Alfa Aesar | A11076 | |
Gel apparatus set with spacers and combs | LabRepCo | 41077017 | |
Glass Dish with Plastic lid | Pyrex | 1122963 | Should be large enough to fit your gel piece |
Glycerol | Anachemia | 43567-540 | |
HCl | Anachemia | 464140468 | |
ImageQuanTL | GE Healthcare Lifesciences | 29000605 | |
IPTG | Invitrogen | 15529-019 | |
KCl | ACP | P-2940 | |
MgCl2 | Caledron | 4903-01 | |
MgSO4 | Sigma-Aldrich | M3409 | |
NaCl | ACP | S-2830 | |
NaOH | BDH | BDH9292 | |
Orbital Rotator | Lab-Line | ||
Phenol | Invitrogen | 15513-039 | |
Round Gel Loading tips | Costar | CS004853 | |
Sodium Phosphate dibasic | Caledron | 8120-1 | |
Sodium Phosphate monobasic | Caledron | 8180-01 | |
SYBRGold | ThermoFisher | S11494 | |
T7 RNA Polymerase | ABM | E041 | |
TEMED | Sigma-Aldrich | T7024-50 ml | |
TO1-3PEG-Biotin Fluorophore | ABM | G955 | |
Tris Base | Fisher | BP152-500 | |
Tryptone | Fisher | BP1421-500 | |
Tween-20 | Sigma | P9496-100 | |
Urea | Fisher | U15-3 | |
Xylene Cyanol | Sigma | X4126-10G | |
Yeast Extract | Bioshop | YEX401.500 |