Here we present a sensitive, rapid, and discriminating post-gel staining method to image RNAs tagged with RNA Mango aptamers I, II, III, or IV, using either native or denaturing polyacrylamide gel electrophoresis (PAGE) gels. After running standard PAGE gels, Mango-tagged RNA can be easily stained with TO1-Biotin and then analyzed using commonly available fluorescence readers.
Native and denaturing polyacrylamide gels are routinely used to characterize ribonucleoprotein (RNP) complex mobility and to measure RNA size, respectively. As many gel-imaging techniques use nonspecific stains or expensive fluorophore probes, sensitive, discriminating, and economical gel-imaging methodologies are highly desirable. RNA Mango core sequences are small (19–22 nt) sequence motifs that, when closed by an arbitrary RNA stem, can be simply and inexpensively appended to an RNA of interest. These Mango tags bind with high affinity and specificity to a thiazole-orange fluorophore ligand called TO1-Biotin, which becomes thousands of times more fluorescent upon binding. Here we show that Mango I, II, III, and IV can be used to specifically image RNA in gels with high sensitivity. As little as 62.5 fmol of RNA in native gels and 125 fmol of RNA in denaturing gels can be detected by soaking gels in an imaging buffer containing potassium and 20 nM TO1-Biotin for 30 min. We demonstrate the specificity of the Mango-tagged system by imaging a Mango-tagged 6S bacterial RNA in the context of a complex mixture of total bacterial RNA.
Mango is an RNA tagging system consisting of a set of four small fluorescent RNA aptamers that bind tightly (nanomolar binding) to simple derivatives of the thiazole-orange (TO1-Biotin, Figure 1A)1,2,3. Upon binding, the fluorescence of this ligand is increased 1,000- to 4,000-fold depending on the specific aptamer. The high brightness of the Mango system, which for Mango III exceeds that of enhanced green fluorescent protein (eGFP), combined with the nanomolar binding affinity of the RNA Mango aptamers, allows it to be used both in the imaging and the purification of RNA complexes2,4.
The X-ray structures of Mango I5, II6, and III7 have been determined to high resolution, and all three aptamers utilize an RNA quadruplex to bind TO1-Biotin (Figure 1B–D). The compact cores of all three aptamers are isolated from the external RNA sequence via compact adaptor motifs. Mango I and II both utilize a flexible GNRA-like loop adaptor to connect their Mango cores to an arbitrary RNA duplex (Figure 1B,C). In contrast, Mango III uses a rigid triplex motif to connect its core to an arbitrary RNA helix (Figure 1D, purple residues), while the structure of Mango IV is not currently known. As the ligand-binding core of each of these aptamers is separated from the external RNA sequence by these helical adaptors, it appears likely that they can all be simply incorporated into a variety of RNAs. The bacterial 6S regulatory RNA (Mango I), components of the yeast spliceosome (Mango I), and the human 5S RNA, U6 RNA, and a C/D scaRNA (Mango II and IV) have all been successfully tagged in this fashion2,8, suggesting that many biological RNAs can be tagged using the RNA Mango aptamer system.
Denaturing and native gels are commonly used to study RNAs. Denaturing gels are often used to judge RNA size or RNA processing, but typically, in the case of a northern blot, for example, require several slow and sequential steps in order to generate an image. While other RNA fluorogenic aptamers, such as RNA Spinach and Broccoli, have been used successfully for gel imaging9, no fluorogenic aptamer system to date possesses the high brightness and affinity of the Mango system, making it of considerable interest to investigate Mango’s gel-imaging abilities. In this study, we wondered if the RNA Mango system could be simply extended to gel imaging, as the excitation and emission wavelengths of TO1-Biotin (510 nm and 535 nm, respectively) are appropriate for imaging in the eGFP channel common to most fluorescent gel-scanning instrumentation.
The post-gel staining protocol presented here provides a rapid way to specifically detect Mango-tagged RNA molecules in native and denaturing polyacrylamide gel electrophoresis (PAGE) gels. This staining method involves soaking gels in a buffer containing potassium and TO1-Biotin. RNA Mango aptamers are G-quadruplex based and potassium is required to stabilize such structures. Using RNA transcribed from minimal Mango-encoding DNA templates (see the protocol section), we can simply detect as little as little as 62.5 fmol of RNA in native gels and 125 fmol of RNA in denaturing gels, using a straightforward staining protocol. In contrast to common nonspecific nucleic acid stains (see Table of Materials, referred to SG from hereon), we can clearly identify Mango-tagged RNA even when high concentrations of total untagged RNA are present in the sample.
1. Preparation of the reagents
2. Preparation and loading of denaturing gels
3. Preparation and loading of native gels
4. RNA Preparation by run-off T7 transcription
NOTE: DNA sequences used for the run-off transcription10 of RNA Mango constructs were ordered commercially. In this method, DNA oligonucleotides containing the reverse complement (RC) of both the sequence to be transcribed and the T7 promoter are hybridized to a T7 promoter top strand sequence and then transcribed in vitro. Below, for each oligonucleotide, the RC of the Mango core sequence is shown in bold and the RC of the T7 promoter region is shown in italics. Residues in regular font correspond to otherwise arbitrary complementary helical regions required to allow the Mango core to properly fold.
Mango I: GCA CGT ACT CTC CTC TCC GCA CCG TCC CTT CGT ACG TGC CTA TAG TGA GTC GTA TTA AAG
Mango II: GCA CGT ACT CTC CTC TTC CTC TCC TCT CCT CGT ACG TGC CTA TAG TGA GTC GTA TTA AAG
Mango III: GGC ACG TAC GAA TAT ACC ACA TAC CAA TCC TTC CTT CGT ACG TGC CTA TAG TGA GTC GTA TTA AAG
Mango IV: GCA CGT ACT CGC CTC ATC CTC ACC ACT CCC TCG GTA CGT GCC TAT AGT GAG TCG TAT TAA AG
T7 Top Strand: CTT TAA TAC GAC TCA CTA TAG G
5. Post-gel staining
6. Imaging Mango-tagged RNAs in gel
Short Mango-tagged RNAs were prepared as described in the protocol section. Assuming that fluorescence in denaturing conditions would be most difficult to observe owing to the presence of urea in the gels, we first studied the resistance of the Mango aptamers to urea, which acts as a nucleic acid denaturant. We found that Mango aptamers are substantially resistant to denaturation up to a urea concentration of approximately 1 M (Figure 2A). Prior to adding gel staining solution to a denaturing gel, the final concentration of urea in the gel is 6 M. Adding sufficient staining solution to decrease this concentration to 1 M would, therefore, be optimal to ensure full Mango fluorescence for all four aptamers. In practice, the staining protocol achieved less than this fully optimal result, but this could simply be rectified if needed by using more staining solution or by the simple expedient of changing the solution once during staining.
Once the Mango-tagged RNA constructs were run into a denaturing gel, the staining time was optimized for maximum gel fluorescence by loading three different Mango III amounts into an 8% denaturing gel (Figure 2B). A time course revealed that after 5 min of soaking in gel staining solution, fluorescence was clearly visible. Maximum fluorescence of the Mango III construct was obtained after 20–40 min of staining, after which time the small RNAs used in this study started to diffuse out of the gel, resulting in a loss of fluorescent signal (Figure 2B). Consequently, both native and denaturing gels were stained for 30 min each. Longer RNA constructs could easily tolerate longer stained times as they would be much less likely to diffuse out of the gel.
Some of the RNA Mango aptamers folded more rapidly than others. Each of the Mango aptamers used in this study was incubated in a gel buffer supplemented with 1.5 M urea and 100 nM TO1-Biotin dye and analyzed using a fluorometer. Mango I, II, and III were fully folded after 10 min, whereas Mango IV became substantially folded only after 40 min (Figure 3A). In the absence of urea, folding was much more rapid as was expected (Figure 3B). To ensure that the native gel samples were fully folded, we preincubated samples for 100 min prior to running them into native gels. Practically, the data in Figure 3 suggests this time could be substantially reduced depending on the Mango aptamer used.
Once the protocol was optimized to detect RNA Mango aptamer fluorescence, the sensitivity of the poststaining method was determined for each of the Mango variants in both native gels. Single bands corresponding to well-folded RNAs were observed for each of the four Mangos in native gels (Figure 4A). Upon serial dilution, as little as 62.5 fmol of Mango II could be observed, while as little as 125 fmol of Mango I, III, and IV were easily visualized. The quantification of native gels was log-linear over about 1.5 orders of magnitude, with Mango I, II, and IV behaving in a more linear fashion than Mango III (Figure 4B).
The results of the denaturing gels were slightly less sensitive than the native gels but were more linear. As little as 125 fmol of Mango II and III were easily detected (Figure 4C). Interestingly, quantification (Figure 4D) indicated that denaturing gels were log-linear or two orders of magnitude. We hypothesize that, in contrast to the native gels where RNA folds were perhaps subjected to partial denaturation during the gel running process, the presence of urea in the denaturing gel might provide a more homogenous way to fold the aptamers once they are placed in the TO1-Biotin staining solution.
As with all gel staining methodologies, if the gel is not carefully transferred into the container, or the rotating speed is too high during the staining period, the gel may fold back onto itself (Figure 5A). This can result in the Mango-tagged RNA sample diffusing from one place of the gel to another but can be easily avoided in practice. In native gels and, particularly, for Mango IV, we observed that incomplete folding can manifest in the appearance of multiple bands presumably corresponding to partially/misfolded RNA conformations (Figure 5B) resulting from shorter folding times. Folding issues in native gels can be avoided by preincubating RNA samples appropriately as previously described and by running native gels in a cold room. In denaturing gels, where RNA folds in situ within the gel, misfolding was not a significant problem. Finally, in the absence of RNA, very little background fluorescence was observed in either gel system.
Next, the specificity of the RNA Mango tag was studied by overexpressing the 6S regulatory RNA in bacteria. This RNA was previously tagged using Mango I (Figure 1E)4. Bacterial cells were transformed with either the pEcoli-RNA Mango plasmid (henceforth M plasmid) or the pEcoli-T1 plasmid as a negative control (henceforth E plasmid). Transformed cells were grown in liquid lysogeny broth medium till an OD600 of 1.0 was reached. The cultures were then induced with 50 µM isopropyl β-D-1-thiogalactopyranoside (IPTG) for 40 min. The cells were harvested via centrifugation at 6,000 x g for 15 min. Total RNA was extracted using phenol-phenol chloroform extraction from cell pellets12 as described in the protocol section. The total RNA samples were concentrated by ethanol precipitation and then treated with DNase I, following the protocol, to remove DNA11. Before using, the RNA was concentrated by ethanol precipitation.
Total bacterial RNA was run into 8% denaturing gels (Figure 6) and stained with either SG13 or TO1-Biotin. For SG staining, 10 µL of 10,000x SG was added to 100 mL of gel buffer; otherwise, the staining protocol was identical to that used for TO1-Biotin. As expected, strong SG staining was observed for a multitude of RNAs, but most prominently for ribosomal (rRNA) and transfer RNAs (tRNA) (Figure 6, left panel). While the Mango-dependent staining (M lanes) could be seen in these SG-stained gels, they could not be uniquely identified given the complex staining pattern observed using this universal stain. In contrast, the TO1-Biotin-stained gels highlighted Mango-dependent bands as the most prominent bands. Only the ribosomal RNA bands are seen to be in competition with the 6S Mango-dependent bands. A number of nonspecifically stained bands could also be observed. Nevertheless, the Mango-dependent bands were again dominant, having only the rRNA and tRNA bands as weakly competing competitors (Figure 6, right panel).
Figure 1: Mango aptamer system. (A) TO1-Biotin fluorophore. (B) Mango I. (C) Mango II. (D) Mango III. Panels B–D show the secondary structure of each aptamer. P1 is an arbitrary stem. The GNRA-like stem-loop (here GAAA) found in Mango I and II is shown in red, the triplex motif of Mango III is shown in purple. (E) The 6S regulatory RNA tagged with Mango I. Please click here to view a larger version of this figure.
Figure 2: Effect of urea on Mango aptamer fluorescence and optimal staining times. (A) A urea titration using 50 nM RNA Mango I (orange circles), Mango II (green circles), Mango III (purple circles), and Mango IV (blue circles), together with 100 nM TO1-Biotin dye and at the indicated urea concentrations. The samples were incubated for 40 min before fluorescence was read at an excitation wavelength of 510 nm and an emission wavelength of 535 nm. (B) Mango III RNA was loaded into an 8% denaturing gel and stained with a gel solution containing 20 nM final TO1-Biotin dye. For each indicated time point, 0.064, 0.32, and 1.6 pmol of Mango III RNA was used from left to right. The gel image was visualized with a fluorescence imager using a 520 nm laser and a 10 min exposure. Please click here to view a larger version of this figure.
Figure 3: Folding times of the Mango aptamers in the presence and absence of urea. (A) In the presence of 1.5 M urea and 100 nM TO1-Biotin, fluorescence time courses were performed using 50 nM of each RNA Mango construct (RNA Mango I: orange dots, Mango II: green dots, Mango III: purple dots, and Mango IV: blue dots). (B) Identical to panel A, except in the absence of urea. All time courses were performed at room temperature. Please click here to view a larger version of this figure.
Figure 4: Fluorescent images of native and denaturing PAGE with RNA Mango constructs. (A) An 8% native gel with serially diluted RNA Mango constructs. Lanes I, II, III, and IV each contain 8 pmol final quantities of RNA Mango I, II, III, and IV, respectively. The right panels are twofold serial dilutions containing 4 pmol, 2 pmol, 1 pmol, 0.5 pmol, 0.25 pmol, 0.125 pmol, and 0.0625 pmol of either Mango I, II, III, or IV, as indicated. Lane 12 contains no RNA. (B) Quantification of three replicates of the native gel (standard deviation of the mean shown for each). (C) An 8% denaturing gel with the same samples loaded as in panel A, except for the fact that denaturing gel loading solution was used instead of native gel loading solution. (D) Three quantified replicates of denaturing gel (standard deviation of the mean shown for each). All gel images were visualized a gel imager with a 520 nm laser and a 10 min exposure. Please click here to view a larger version of this figure.
Figure 5: Suboptimal gels and incomplete folding of Mango IV in an 8% native gel. (A) A serial dilution of the sort shown in Figure 4 for Mango II but showing the effect of gel folding during the staining protocol. (B) Mango IV native gel samples that were not allowed to fold for long enough in native buffer prior to gel loading exhibit double bands. Otherwise, these results are similar to the Mango IV results shown in Figure 4A. All gel images were visualized using a gel imager with a 520 nm laser and a 10 min exposure. Please click here to view a larger version of this figure.
Figure 6: Mango-tagged RNAs can be detected in the presence of total RNA, using TO1-Biotin staining. 8% denaturing gels were loaded with 100 ng of total RNA and were run for 30 min. The left gel was stained with SG and the right panel with TO1-Biotin. For both panels, lanes labeled E were loaded with 100 ng of pEcoli-T1 (no Mango tag) and lanes labeled M were loaded with 100 ng of pEcoli-RNA Mango (6S RNA tagged with a Mango I tag). TO1-Biotin-stained gel images were visualized using an imager with a 520 nm laser and a 10 min exposure. SG-stained gel images were visualized using a gel imager using a 460 nm laser and a 10 min exposure. Please click here to view a larger version of this figure.
PERCENTAGE | GEL VOLUME | |||
20 mL | 30 mL | 50 mL | ||
5% | A | 4 | 6 | 10 |
B | 14 | 21 | 35 | |
C | 2 | 3 | 5 | |
6% | A | 4.8 | 7.2 | 12 |
B | 13.2 | 19.8 | 33 | |
C | 2 | 3 | 5 | |
8% | A | 6.4 | 9.6 | 16 |
B | 11.6 | 17.4 | 29 | |
C | 2 | 3 | 5 | |
10% | A | 8 | 12 | 20 |
B | 10 | 15 | 25 | |
C | 2 | 3 | 5 | |
12% | A | 9.6 | 14.4 | 24 |
B | 8.4 | 12.6 | 21 | |
C | 2 | 3 | 5 | |
15% | A | 12 | 18 | 30 |
B | 6 | 9 | 15 | |
C | 2 | 3 | 5 | |
20% | A | 16 | 24 | 40 |
B | 2 | 3 | 5 | |
C | 2 | 3 | 5 | |
APS (µL) | 48 | 72 | 120 | |
TEMED (µL) | 20 | 30 | 50 |
Table 1: Denaturing PAGE gel casting table. A = Solution A, B = Solution B, C = Solution C.
Denaturing Gel % | BB (~mobility nt) | XC (~mobility in nt) |
5 | 35 | 130 |
6 | 26 | 106 |
8 | 19 | 70-80 |
10 | 12 | 55 |
20 | 8 | 28 |
23 | 5-6 |
Table 2: Approximate gel mobilities of bromophenol blue (BB) and xylene cyanol (XC) gel loading dyes in polyacrylamide denaturing gels.
PERCENTAGE | GEL VOLUME | |||
20 mL | 30 mL | 50 mL | ||
5% | 1X TBE | 16.5 | 24.75 | 41.25 |
40% 29:1 acrylamide:N,N'-methylenebisacrylamide | 2.5 | 3.75 | 6.25 | |
Glycerol | 1 | 1.5 | 2.5 | |
6% | 1X TBE | 16 | 24 | 40 |
40% 29:1 acrylamide:N,N'-methylenebisacrylamide | 3 | 4.5 | 7.5 | |
Glycerol | 1 | 1.5 | 2.5 | |
8% | 1X TBE | 15 | 22.5 | 37.5 |
40% 29:1 acrylamide:N,N'-methylenebisacrylamide | 4 | 6 | 10 | |
Glycerol | 1 | 1.5 | 2.5 | |
10% | 1X TBE | 14 | 21 | 35 |
40% 29:1 acrylamide:N,N'-methylenebisacrylamide | 5 | 7.5 | 12.5 | |
Glycerol | 1 | 1.5 | 2.5 | |
12% | 1X TBE | 13 | 19.5 | 32.5 |
40% 29:1 acrylamide:N,N'-methylenebisacrylamide | 6 | 9 | 15 | |
Glycerol | 1 | 1.5 | 2.5 | |
15% | 1X TBE | 11.5 | 17.25 | 28.75 |
40% 29:1 acrylamide:N,N'-methylenebisacrylamide | 7.5 | 11.25 | 18.75 | |
Glycerol | 1 | 1.5 | 2.5 | |
20% | 1X TBE | 9 | 13.5 | 22.5 |
40% 29:1 acrylamide:N,N'-methylenebisacrylamide | 10 | 15 | 25 | |
Glycerol | 1 | 1.5 | 2.5 | |
APS (µL) | 48 | 72 | 120 | |
TEMED (µL) | 20 | 30 | 50 |
Table 3: Native PAGE gel casting table.
A significant advantage of the Mango fluorescent tag is that a single tag can be used in multiple ways. The high brightness and affinity of these aptamers make them useful not only for in cell visualization2 but also for in vitro RNA or RNP purification4. Therefore, gel imaging extends the versatility of the Mango tag in a straightforward way. Mango gel imaging sensitivity is slightly less than that of a northern blot14 but can easily detect 60–120 fmol of RNA sample, without needing lengthy and tedious membrane transfer and probing steps. This is comparable to the hybridization-based probing efficiency found previously for small RNAs in gel15. While other fluorogenic aptamer methodologies—particularly, RNA Spinach—have greater sensitivity and specificity9, none currently have simultaneously the high brightness and affinity of the Mango aptamer system, which allows a single RNA tag to be used for cellular imaging, RNP purification, and now gel imaging.
There are a few critical steps in this gel staining protocol. When working with RNA solutions, the solutions should be sterile filtered, and single-use plasticware should be used. Catuion, running native gels as complexes or RNA structures can be easily denatured if the power levels for the gel are too high and result in gel heating. Ensure any used glassware is clean and not contaminated with RNases. Additionally, always be careful when transferring and picking up gels as they are fragile and can be prone to breakage.
The TO1-Biotin stain penetrates gels rapidly, but the data presented here also indicate that Mango IV folding, in particular, can be rate limiting (Figure 2 and Figure 3). Using the conditions stated in the protocol section, we observed log-linear behavior for all four aptamers over two orders of magnitude in denaturing gels, making the method useful for quantification (Figure 4C,D). Since the small Mango aptamers used in this study easily diffused out of the gel matrix, we expect the quantitation to improve for longer RNA constructs.
The Mango tag gel imaging methodology demonstrated here is robust and is anticipated to be able to be simply extended in terms of sensitivity and specificity. Mango I, II, and III fold reliably, while Mango IV does not. While we have not explored destaining protocols, we anticipate that such an approach could also simply improve specificity. While beyond the scope of this work, the fluorescence and biotin tag conferred to Mango-tagged RNA when using TO1-Biotin fluorophore appears highly likely to further streamline gel analysis and purification. Commercially available secondary biotin-labeling techniques, for example, promise to further enhance the detection limits of this simple RNA Mango-tagging system. Likewise, it appears probable that native Mango-tagged RNA protein complexes can be eluted from a gel and recovered using streptavidin magnetic beads so as to capture the eluted RNA complex. This would further simplify the routine purification of biologically important RNAs and RNA complexes by the simple expedient of adding a Mango tag to the RNA of interest.
The authors have nothing to disclose.
The authors thank Razvan Cojocaru and Amir Abdolahzadeh for their technical assistance and Lena Dolgosheina for proofreading the manuscript. Funding was provided for this project by a Canadian Natural Sciences and Engineering Research Council (NSERC) operating grant to P.J.U.
0.8mm Thick Comb 14 Wells for 30 mL PAGE gels | LabRepCo | 11956042 | |
101-1000 µL tips | Fisher | 02-707-511 | |
20-200 µL low retention tips | Fisher Scientific | 02-717-143 | |
Acrylamide:N,N'-methylenebisacrylamide (40% 19:1) | Bioreagents | BP1406-1 | Acute toxicity |
Acrylamide:N,N'-methylenebisacrylamide (40% 29:1) | Fisher | BP1408-1 | Acute toxicity |
Agar | Anachemia | 02116-380 | |
Aluminium backed TLC plate | Sigma-Aldrich | 1164840001 | |
Amersham Imager 600 | GE Healthcare Lifesciences | 29083461 | |
Ammonium Persulfate | Biorad | 161-0700 | Harmful |
BL21 cells | NEB | C2527H | |
Boric Acid | ACP | B-2940 | |
Bromophenol Blue sodium salt | Sigma | B8026-25G | |
Chloloform | ACP | C3300 | |
Dithiothreitol | Sigma Aldrich Alcohols | D0632-5G | |
DNase I | ThermoFisher | EN0525 | |
EDTA Disodium Salt | ACP | E-4320 | |
Ethanol | Commerial | P016EAAN | |
Flat Gel Loading tips | Costar | CS004854 | |
Formamide 99% | Alfa Aesar | A11076 | |
Gel apparatus set with spacers and combs | LabRepCo | 41077017 | |
Glass Dish with Plastic lid | Pyrex | 1122963 | Should be large enough to fit your gel piece |
Glycerol | Anachemia | 43567-540 | |
HCl | Anachemia | 464140468 | |
ImageQuanTL | GE Healthcare Lifesciences | 29000605 | |
IPTG | Invitrogen | 15529-019 | |
KCl | ACP | P-2940 | |
MgCl2 | Caledron | 4903-01 | |
MgSO4 | Sigma-Aldrich | M3409 | |
NaCl | ACP | S-2830 | |
NaOH | BDH | BDH9292 | |
Orbital Rotator | Lab-Line | ||
Phenol | Invitrogen | 15513-039 | |
Round Gel Loading tips | Costar | CS004853 | |
Sodium Phosphate dibasic | Caledron | 8120-1 | |
Sodium Phosphate monobasic | Caledron | 8180-01 | |
SYBRGold | ThermoFisher | S11494 | |
T7 RNA Polymerase | ABM | E041 | |
TEMED | Sigma-Aldrich | T7024-50 ml | |
TO1-3PEG-Biotin Fluorophore | ABM | G955 | |
Tris Base | Fisher | BP152-500 | |
Tryptone | Fisher | BP1421-500 | |
Tween-20 | Sigma | P9496-100 | |
Urea | Fisher | U15-3 | |
Xylene Cyanol | Sigma | X4126-10G | |
Yeast Extract | Bioshop | YEX401.500 |