Hier presenteren we een protocol voor het opwekken en scoren van ziekten in een Xenogenic graft-versus-hostziekte (xenoGVHD) model. xenoGVHD biedt een in vivo model om immunosuppressie van menselijke T-cellen te bestuderen. Daarnaast beschrijven we hoe we menselijke T-cellen in weefsels met digitale PCR kunnen detecteren als een hulpmiddel om immunosuppressie te kwantificeren.
Acute graft-versus-host ziekte (GVHD) is een significante beperking voor patiënten die hematopoietische stamceltransplantatie ondergaan als therapie voor Hematologische tekortkomingen en maligniteiten. Acute GVHD treedt op wanneer donor cellen gastheer weefsels als een vreemd antigeen herkennen en een immuunrespons op de host monteren. Huidige behandelingen omvatten toxische immunosuppressieve geneesmiddelen die patiënten vatbaar voor infectie en herhaling. Zo, er is lopend onderzoek naar een acute GVHD therapie die effectief kan richten op donor T cellen en het verminderen van bijwerkingen. Veel van dit pre-klinische werk maakt gebruik van de xenogene GVHD (xenoGVHD) Murine model dat het mogelijk maakt voor het testen van immunosuppressieve therapieën op menselijke cellen in plaats van murene cellen in een in vivo systeem. Dit protocol schetst hoe xenoGVHD te induceren en hoe te blind en standaardiseren klinische scoring om consistente resultaten te garanderen. Daarnaast wordt in dit protocol beschreven hoe u digitale PCR gebruikt om menselijke T-cellen in muizen weefsels te detecteren, die vervolgens kunnen worden gebruikt om de werkzaamheid van geteste therapieën te kwantificeren. Het xenoGVHD-model biedt niet alleen een model om GVHD-therapieën te testen, maar elke therapie die menselijke T-cellen kan onderdrukken, die vervolgens kan worden toegepast op veel ontstekingsziekten.
Allogene hematopoëtische stamceltransplantatie (HSCT) is een routine behandeling geworden voor patiënten die lijden aan hematologische maligniteiten zoals leukemie met een slechte prognose. Een significante complicatie van HSCT is acute graft-versus-hostziekte (GVHD). In een 2012-studie werd gemeld dat acute GVHD werd ontwikkeld in 39% van de HSCT-patiënten die transplantaties kregen van broer of zus en 59% van de patiënten die transplantaties ontvingen van niet-verbonden donoren1. Acute GVHD treedt op wanneer de donor afkomstige T-cellen de organen van de geadresseerde aanvallen. De enige succesvolle therapie voor GVHD is behandeling met zeer immunosuppressieve geneesmiddelen2, die zeer giftig en verhogen het risico van infectie en tumor herhaling. Zo, ondanks verbeteringen die zijn aangebracht in acute gvhd overleving in de afgelopen jaren3,4,5, er is nog steeds een kritische behoefte aan verbeterde gvhd therapieën met minimale toxiciteit die op lange termijn remissie bevorderen.
Het algemene doel van de volgende methoden is om te induceren en te scoren xenogene GVHD (xenoGVHD). De xenoGVHD model werd ontwikkeld als een instrument voor het opwekken van acute GVHD met menselijke cellen in plaats van Murine cellen waardoor meer directe vertaling van pre-klinisch GVHD onderzoek naar klinische proeven6. Dit model omvat het intraveneus injecteren van humane perifere bloed mononucleaire cellen (PBMC) in NOD-SCID IL-2Rγnull (NSG) muizen die sublethaal bestraald zijn. Geïnjecteerde humane t-cellen worden geactiveerd door humane antigeen-presentatie cellen (apc’s) die muriene antigeen vertonen en de geactiveerde T-cellen migreren naar verre weefsels resulterend in systemische ontstekingen en uiteindelijk overlijden6,7, 8 , 9 , 10. ziekte pathologie en progressie in het xenogvhd model nabootsen van menselijke acute gvhd. In het bijzonder zijn de pathogene menselijke T-cellen reactief naar Murine Major histocompatibility complex (MHC) eiwitten, die vergelijkbaar is met de T-cel alloreactivity in humaan gvhd6,9. Het belangrijkste voordeel van de xenoGVHD model over de muis MHC-mismatch model, de andere veel gebruikte GVHD model, is het mogelijk voor het testen van therapieën op menselijke cellen in plaats van Murine cellen. Dit maakt het testen van producten die direct kunnen worden vertaald naar de kliniek zonder enige wijzigingen, omdat ze zijn gemaakt om menselijke cellen te richten. Onlangs is dit model gebruikt om een humaan anti-Il-2 antilichaam11, humane Thymus regulatoire T-cellen (tregs)12 en humane mesenchymale stamcellen13 te testen als mogelijke behandelingen voor acute gvhd. In een bredere context kan dit model worden gebruikt als een in-vivo-onderdrukkings test voor elk medicijn of celtype dat menselijke T-celactiviteit kan onderdrukken. Stockis et al.14 gebruikte bijvoorbeeld het xenoGVHD-model om het effect te bestuderen van het blokkeren van integrine αvβ8 op Treg suppressieve activiteit in vivo. Het xenoGVHD-model kan dus inzicht geven in het mechanisme van elke therapie gericht op T-cellen in een in vivo-instelling.
Een aanvullende methode die in dit protocol wordt beschreven, is het detecteren van menselijke T-cellen in muis weefsels met behulp van digitale polymerase kettingreactie (dPCR). Het doel van deze methode is om een instrument aan te bieden om migratie en proliferatie van T-cellen in doelweefsels te kwantificeren, die de werkzaamheid van immunosuppressieve therapieën meten die in dit model worden getest. dPCR is een relatief nieuwe methode voor de kwantificering van nucleïnezuren15. In het kort wordt het PCR-reactiemengsel onderverdeeld in partities die kleine aantallen van de doel volgorde of helemaal geen doel bevatten. De doel volgorde wordt vervolgens versterkt en gedetecteerd met behulp van DNA-intercalciserende kleurstoffen of fluorescerende doelspecifieke sondes. dpcr kwantificeert het aantal kopieën van de doel volgorde op basis van de Fractie van positieve partities en de statistieken van Poisson15,16. Het opsporen van T-cellen met dPCR vereist veel minder weefsel dan andere alternatieve methoden, waaronder Flowcytometrie en histologie, en kan worden uitgevoerd op bevroren of vast weefsel. dPCR vereist geen standaard curve om de Kopieer nummers te bepalen, noch zijn technische replicaten vereist. Dit vermindert de hoeveelheid reagens en het template-DNA die nodig zijn voor dPCR in vergelijking met traditionele kwantitatieve PCR (qPCR)16. Het partitioneren van de PCR-reactie in subreacties in dPCR concentreert zich doeltreffend op doelen17. Zo is dPCR in de eerste plaats een hulpmiddel voor het opsporen van zeldzame doelen in een grote hoeveelheid niet-doelwit DNA. Bijvoorbeeld, dPCR wordt gebruikt voor het opsporen van bacteriële besmetting in melk18, identificeren zeldzame mutaties in de oestrogeen receptor Gene19, en detecteren CIRCULEREND tumor-DNA in het bloed van patiënten20. In dit protocol fungeert dPCR als een efficiënt hulpmiddel voor het opsporen en kwantificeren van menselijke T-cellen in weefsels van muizen met xenoGVHD.
Ziekteprogressie is over het algemeen consistent in het xenoGVHD-model, zelfs met een injectie van PBMC van verschillende donoren, zodat meerdere experimenten kunnen worden gecombineerd. De belangrijkste stappen die nodig zijn om deze consistentie te behouden, zijn goede i.v.-injectietechniek, blindering en consistente scoring. Een studie van Nervi et al.25 toonde aan dat in vergelijking met intraveneuze staart ader injectie, retro-orbitale injecties van PBMC resulteerden in een consistentere engr…
The authors have nothing to disclose.
We willen graag het laboratorium van Lane Christenson erkennen voor het leveren van de digitale PCR-machine die wordt gebruikt in deze experimenten en voor de geleverde technische ondersteuning. Ook willen we Dr. Thomas Yankee bedanken voor zijn begeleiding en mentorschap. Deze studies werden ondersteund door de Tripp Family Foundation.
1.5 mL eppendorf tubes | Fisher | 05-408-129 | |
10 mL serological pipet | VWR International | 89130-898 | |
10mL BD Vacutainers – Green capped with Sodium Heparin | Becton Dickinson | 366480 | |
250 µL Ranin pipette tips | Rainin | 17001118 | Do not use other pipettes or pipet tips for droplet generation |
50 mL conical tube | VWR International | 89039-656 | |
96-Well ddPCR plate | Bio-Rad | 12001925 | |
ACK (Ammonium-Chloride-Potassium) Lysing Buffer | Lonza | 10-548E | Optional |
Alcohol Wipes | Fisher Scientific | 6818 | |
Anesthesia Chamber | World Precision Instruments | EZ-178 | Provided by animal facility |
Anesthesia Machine | Parkland Scientific | PM1002 | Provided by animal facility |
BD Vacutainer Safety-Lok Blood Collection Set | Becton Dickinson | 367281 | |
DG8 Cartridges and Gaskets for QX100/QX200 Droplet Generator | Bio-Rad | 1864007 | |
DNAse and RNAse free Molecular Grade H2O | Life Technologies | 1811318 | |
Ethyl alcohol, Pure,200 proof, for molecular biology | Sigma-Aldrich | E7023-500ML | |
Fetal Bovine Serum | Atlanta Biologicals | S11150 | |
Ficoll | Fisher Scientific | 45001750 | |
Insulin Syringe | Fisher Scientific | 329424 | |
Isoflurane | Sigma-Aldrich | CDS019936 | Provided by animal facility |
Liquid nitrogen | N/A | N/A | |
Mouse Irradiator Pie Cage | Braintree Scientific, Inc. | MPC 1 | Holds up to 11 mice |
Nexcare Gentle Paper Tape (a.k.a. 3M Micropore Surgical Tape / 3/4") | Fisher Scientific | 19-027-761 | |
P1000 pipetman | MidSci | A-1000 | |
P200 pipetman | MidSci | A-200 | |
Pierceable Foil Heat Seal | Bio-Rad | 1814040 | |
Pipetaid Gilson Macroman | Fisher Scientific | F110756 | |
Pipet-Lite Multi Pipette L8-200XLS+ | Rainin | 17013805 | Do not use other pipettes or pipet tips for droplet generation |
Qiagen DNeasy Blood and Tissue Kit | Qiagen | 69506 | |
qPCR plates | VWR International | 89218-292 | |
QX200 Droplet Digital PCR System | Bio-Rad | 12001925 | Includes droplet generator, droplet reader, laptop computer, software, associated component consumables, for EvaGreen or probe-based digital PCR applications |
QX200 Droplet Generation Oil for EvaGreen | Bio-Rad | 1864006 | |
QX200 ddPCR EvaGreen Supermix | Bio-Rad | 1864033 | |
RNase and DNase-free plate seal | Thermo Scientific | 12565491 | |
RPMI Advanced 1640 | Life Technologies | 12633012 | |
Sterile Gauze Pads (2" x 2", 12-Ply) | Fisher Scientific | 67522 | |
Sterile Phosphate Buffered Saline | Fisher Scientific | 21040CV | |
Sterile reservoir | VWR International | 89094-662 | |
Surgial Scissors | Kent Scientific | INS600393-4 | |
Surgical Forceps | Kent Scientific | INS650914-4 |