This protocol details the steps, costs, and equipment necessary to generate E. coli-based cell extracts and implement in vitro protein synthesis reactions within 4 days or less. To leverage the flexible nature of this platform for broad applications, we discuss reaction conditions that can be adapted and optimized.
Over the last 50 years, Cell-Free Protein Synthesis (CFPS) has emerged as a powerful technology to harness the transcriptional and translational capacity of cells within a test tube. By obviating the need to maintain the viability of the cell, and by eliminating the cellular barrier, CFPS has been foundational to emerging applications in biomanufacturing of traditionally challenging proteins, as well as applications in rapid prototyping for metabolic engineering, and functional genomics. Our methods for implementing an E. coli-based CFPS platform allow new users to access many of these applications. Here, we describe methods to prepare extract through the use of enriched media, baffled flasks, and a reproducible method of tunable sonication-based cell lysis. This extract can then be used for protein expression capable of producing 900 µg/mL or more of super folder green fluorescent protein (sfGFP) in just 5 h from experimental setup to data analysis, given that appropriate reagent stocks have been prepared beforehand. The estimated startup cost of obtaining reagents is $4,500 which will sustain thousands of reactions at an estimated cost of $0.021 per µg of protein produced or $0.019 per µL of reaction. Additionally, the protein expression methods mirror the ease of the reaction setup seen in commercially available systems due to optimization of reagent pre-mixes, at a fraction of the cost. In order to enable the user to leverage the flexible nature of the CFPS platform for broad applications, we have identified a variety of aspects of the platform that can be tuned and optimized depending on the resources available and the protein expression outcomes desired.
Cell-free Protein Synthesis (CFPS) has emerged as a technology that has unlocked a number of new opportunities for protein production, functional genomics, metabolic engineering, and more within the last 50 years1,2. Compared to standard in vivo protein expression platforms, CFPS provides three key advantages: 1) the cell-free nature of the platform enables the production of proteins that would be potentially toxic or foreign to the cell3,4,5,6; 2) inactivation of genomic DNA and the introduction of a template DNA encoding the gene(s) of interest channel all of the systemic energy within the reaction to the production of the protein(s) of interest; and 3) the open nature of the platform enables the user to modify and monitor the reaction conditions and composition in real time7,8. This direct access to the reaction supports the augmentation of biological systems with expanded chemistries and redox conditions for the production of novel proteins and the tuning of metabolic processes2,9,10. Direct access also allows the user to combine the CFPS reaction with activity assays in a single-pot system for more rapid design-build-test cycles11. The capacity to perform the CFPS reaction in small volume droplets or on paper-based devices further supports high-throughput discovery efforts and rapid prototyping12,13,14,15,16. As a result of these advantages and the plug and play nature of the system, CFPS has uniquely enabled a variety of biotechnology applications such as the production of proteins that are difficult to solubly express in vivo17,18,19,20, detection of disease21,22,23, on demand biomanufacturing18,24,25,26,27, and education28,29, all of which show the flexibility and utility of the cell-free platform.
CFPS systems can be generated from a variety of crude lysates from both prokaryotic and eukaryotic cell lines. This allows for diverse options in the system of choice, each of which have advantages and disadvantages depending on the application of interest. CFPS systems also vary greatly in preparation time, cost, and productivity. The most commonly utilized cell extracts are produced from wheat germ, rabbit reticulocyte, insect cells, and Escherichia coli cells, with the latter being the most cost-effective to date while producing the highest volumetric yields of protein30. While other CFPS systems can be advantageous for their innate post-translational modification machinery, emerging applications using the E. coli-based machinery are able to bridge the gap by generating site-specifically phosphorylated and glycosylated proteins on demand31,32,33,34,35.
CFPS reactions can be run in either batch, continuous-exchange cell-free (CECF) or continuous-flow cell-free (CFCF) formats. The batch format is a closed system whose reaction lifetime is limited due to diminishing quantities of reactants and the accumulation of inhibitory byproducts of the reaction. CECF and CFCF methods increase the lifetime of the reaction, and thereby result in increased volumetric protein yields compared to the batch reaction. This is accomplished by allowing the byproducts of protein synthesis to be removed from the reaction vessel while new reactants are supplied throughout the course of the reaction2. In the case of CFCF, the protein of interest can also be removed from the reaction chamber, while in CECF, the protein of interest remains in the reaction chamber comprised of a semi-permeable membrane36,37. These methods are especially valuable in overcoming poor volumetric yields of difficult-to-express proteins of interest38,39,40,41,42,43. The challenges in implementing the CECF and CFCF approaches are that 1) while they result in more efficient use of the bio machinery responsible for transcription and translation, they require notably larger quantities of reagents that increases overall cost and 2) they require more complex reaction setups and specialized equipment compared to the batch format44. In order to ensure accessibility for new users, the protocols described herein focus on the batch format at reaction volumes of 15 µL with specific recommendations for increasing the reaction volume to the milliliter scale.
The methods presented herein enable non-experts with basic laboratory skills (such as undergraduate students) to implement cell growth, extract preparation, and batch format reaction setup for an E. coli-based CFPS system. This approach is cost-effective compared to commercially available kits without sacrificing the ease of kit-based reaction setup. Furthermore, this approach enables applications in the laboratory and in the field. When deciding to implement CFPS, new users should thoroughly evaluate the efficacy of conventional protein expression systems for startup investment, as CFPS may not be superior in every case. The CFPS methods described here enable the user to directly implement a variety of applications, including functional genomics, high-throughput testing, the production of proteins that are intractable for in vivo expression, as well as field applications including biosensors and educational kits for synthetic biology. Additional applications such as metabolic engineering, tuning of protein expression conditions, disease detection, and scale-up using CECF or CFCF methods are still possible but may require experience with the CFPS platform for further modification of reaction conditions. Our methods combine growth in enriched media and baffled flasks, with relatively rapid and reproducible methods of cell lysis through sonication, followed by a simplified CFPS reaction setup that utilizes optimized premixes45. While the cellular growth methods have become somewhat standardized within this field, methods for cell lysis vary widely. In addition to sonication, common lysis methods include utilization of a French press, a homogenizer, bead beaters, or lysozyme and other biochemical and physical disruption methods46,47,48,49. Using our methods, approximately 2 mL of crude cell extract are obtained per 1 L of cells. This quantity of cell extract can support four hundred 15 µL CFPS reactions, each producing ~900 µg/mL of reporter sfGFP protein from the template plasmid pJL1-sfGFP. This method costs $0.021/µg of sfGFP produced ($.019/µL of reaction), excluding the cost of labor and equipment (Supplemental Figure 1). Starting from the scratch, this method can be implemented in 4 days by a single person and repeat CFPS reactions can be completed within hours (Figure 1). Additionally, the protocol can be scaled up in volume for larger batches of reagent preparation to suit the user's needs.Importantly, the protocol presented here can be implemented by laboratory trained non-experts such as undergraduate students, as it only requires basic laboratory skills. The procedures described below, and the accompanying video have been specifically developed to improve accessibility of the E. coli CFPS platform for broad usage.
1. Media Preparation and Cell Growth
2. Crude Cell Extract Preparation – Day 4
3. Cell-Free Protein Synthesis Batch Format Reactions
4. Quantification of the Reporter Protein, [sfGFP]
We have presented a sonication-based E. coli extract preparation protocol that can be completed over a four-day span, with Figure 1 demonstrating the procedural breakdown over each day. There is malleability to the steps that can be completed in each day with various pausing points, but we have found this workflow to be the most effective to execute. Additionally, both the cell pellets (step 1.3.18) and fully prepared extract (step 2.10) are stable at -80 °C for at least a year, allowing the user to create larger stocks of each to save for use at a later time17. Not only is the extract stable over long time periods, but the extract can also undergo at least five freeze thaw cycles without a significant loss of productivity (Figure 4). This allows for larger aliquots of extract to be stored for multiple uses if freezer storage space is limited. However, we recommend multiple smaller aliquots (~100 μL) of extract whenever possible.
With every new extract preparation, we recommend that the user performs a magnesium titration in order to determine the optimal amount of magnesium for that batch of extract. Users can quantify batch-to-batch variability in total protein concentration of the cell extract by Bradford assay. For higher performing extracts, we typically see total protein concentrations of 30-50 mg/mL, and within this range there is no obvious correlation between total protein concentrations and cell extract performance. Therefore, we recommend that users tune magnesium concentrations accordingly to ensure that protein and nucleic acid functionality are maximized for each extract batch. Magnesium levels are important for proper DNA replication, transcription and translation, but excessive levels can be detrimental to these processes53. In order to demonstrate this dependency, we have performed a co-titration of magnesium and extract volume to determine the optimal combination that minimizes the amount of extract necessary, while maintaining a productive reaction (Figure 5). From this experiment, we recommend using 5 µL of extract and 10 mM Mg2+ for extract with a total protein content of 30 mg/mL, in order to obtain over 1,000 μg/mL of sfGFP.
Our experience with CFPS has also allowed us to determine steps within the protocol that can be varied without detriment to the overall productivity of the system, and others that are integral for a high performing CFPS system. Most notably, the final OD600 of cell harvest does not significantly affect the final output of the CFPS reaction, and cells can feasibly be harvested anywhere from 2.7 – 4.0 OD600. This represents the early exponential phase of growth where ribosome concentration per cell is the highest and the translational machinery is the most active to support rapid growth. This observation allows users flexibility to optimize their own procedures. We recommend harvesting at approximately 3.0 OD600 in order to capture the cells at an OD600 closer to 3.3 by the time harvesting is complete (Figure 2A). Variables that do impact CFPS yields include template DNA quality, reaction vessel size, and the relative quantities of cell extract and magnesium ion present in the reaction. We have found DNA quality to have notable batch-to-batch variation. In order to resolve this, we recommend that users purify DNA via a midi or maxi prep, followed by an additional DNA cleanup step either on the DNA purification column used in the maxiprep, or post-purification using an additional DNA cleanup kit. This improves the reproducibility in DNA quality for CFPS reactions and results in more robust protein production (Figure 2B). The reaction vessel also impacts volumetric yields, such that the protein production of identical reaction setups in varying vessel volumes can differ up to 40%. It has been theorized that the boost in in volumetric yield observed in larger vessels is due to an increased surface area of the reaction mixture, allowing for better oxygen exchange (Figure 2C), and others have further boosted volumetric yields by running CFPS reactions in large flat-bottom plates, which we recommend for reactions over 100 µL17,31,37,52.
Figure 1: Timeline for culture growth, production of cell extract, setup and quantification of CFPS reactions. The user can implement the CFPS platform for their research applications through this four-day workflow. Reagent preparation represents the primary time and cost investment for the first round of this experiment and diminishes substantially after reagents stocks are established. Additionally, cell pellets and prepared cell extract can be stored for over a year at -80 °C, allowing the user to begin the timeline at various steps for faster results. The user can also pause at various steps to modify the timeline of this workflow. Please click here to view a larger version of this figure.
Figure 2: Modifiable conditions for CFPS and the effects on volumetric reaction yields.A. Extract productivity comparison based upon harvesting BL21(DE3) cells at various OD600 readings. Based on this plot, we recommend harvesting at an OD600 of 3.3 to produce at least 1000 µg/mL of target protein. Reactions were performed at a 15 μL scale in 1.5 mL microfuge tubes. B. Comparison of two DNA maxiprep wash protocols with and without post-purification DNA-cleanups. pJL1-sfGFP plasmids underwent a maxiprep with one or two washes followed by a post-purification cleanup by PCR purification kit. To achieve ~900 µg/mL of protein expression, we suggest performing a post-purification DNA cleanup regardless of the number of maxiprep washes. Reactions were performed at a 15 μL scale in 1.5 mL microfuge tubes. C. 15 µL CFPS reactions performed in various vessels ranging from 2 mL to 0.6 mL microfuge tubes. "Neg" represents a negative control where no DNA template was added to the reaction. All error bars represent 1 standard deviation of three independent reactions for each condition, each of which was quantified in triplicate. Please click here to view a larger version of this figure.
Figure 3: Key procedural setups and outcomes for creating productive extract. A. Proper setup of sonication ice water bath to ensure cooling of sample while heat is generated during sonication. B. 1.5 mL microfuge tube containing resuspended cell pellet pre (left) and post (right) sonication. The resulting lysate should display a darker hue compared to resuspended cell pellet. C. Proper separation of the supernatant and pellet of cell lysate after 18,000 x g centrifugation. D. CFPS reactions after 4 h of incubation at 37 °C. 1.5 mL microfuge tube on the right (successful reaction) shows visible fluorescence of the sfGFP reporter protein at ~900 μg/mL. The negative control tube on the left, lacking template DNA and simulating an unsuccessful reaction, displays a clear solution with no fluorescence. Please click here to view a larger version of this figure.
Figure 4: Change in protein expression over 5 freeze-thaw cycles for CFPS extract. Extract prepared from the same growth underwent five freeze thaw cycles via liquid nitrogen flash freezing followed by thawing on ice. No significant changes in extract productivity for expressing sfGFP were seen over the five freeze-thaw cycles. Reactions were performed at a 15 μL scale in 1.5 mL microfuge tubes. "Neg" represents a negative control where no DNA template was added to the reaction. All error bars represent 1 standard deviation of three independent reactions for each condition, each of which was quantified in triplicate. Please click here to view a larger version of this figure.
Figure 5: CFPS for reactions with varying [Mg2+] and extract volumes versus [sfGFP]. [Mg2+] ranged from 8 mM to 14 mM with 2 mM increments and extract volumes ranged from 3 µL to 7 µL with 1 µL increments. The color code represents [sfGFP] produced from high (red) to low (purple). To maximize reagent efficiency while maintaining high protein production, we recommend using 5 µL of extract and 10 mM Mg2+ for extracts that have a total protein content of ~30 mg/mL, as determined by Bradford assay. Original points to generate the contour plot were based off endpoint fluorescence of three independent reactions for each condition, each of which was measured in triplicate. Reactions were performed at a 15 μL scale in 1.5 mL microfuge tubes. Please click here to view a larger version of this figure.
Supplementary Figure 1: Cost per microgram of protein produced and per microliter of reaction across six cell-free protein synthesis platforms. Our platform is compared to five different cell free protein synthesis kits/platforms with varying productivity and pricing. Our sonication based CFPS platform is more cost-effective in both $/µg of protein and $/µL of reaction than most commercial kits and provides the ease of a kit for reaction setup, while remaining cost comparable to other academic CFPS platforms. Please click here to view a larger version of this figure.
Supplementary Figure 2: SDS-PAGE of sfGFP expression in CFPS. Cell-free protein synthesis reactions with (+ DNA) and without (- DNA) DNA template for sfGFP were run on a 12% SDSPAGE gel to demonstrate the expression of sfGFP observed at 27 kDa (black arrow). Traditional SDS-PAGE techniques were used. Each sample loaded onto the gel included 18 µg of total protein based on Bradford assay quantification of total protein in the cell extract. Based on fluorescence intensity measurements and our standard curve, we estimate that the "+ DNA" lane contains 0.42 µg of sfGFP. In order to obtain these samples, CFPS reactions were run at a 15 µL scale in 1.5 mL microfuge tubes producing volumetric yields consistent with Figure 3C. Please click here to view a larger version of this figure.
Supplementary Figure 3: Standard curve for sfGFP on Cytation 5. This curve was determined using the methods outlined above. All data collected for this manuscript was converted from endpoint fluorescence readings to [sfGFP] in µg/mL using this standard curve. Please click here to view a larger version of this figure.
Supplemental Information. Please click here to download this file.
Cell-free protein synthesis has emerged as a powerful and enabling technology for a variety of applications ranging from biomanufacturing to rapid prototyping of biochemical systems. The breadth of applications is supported by the capacity to monitor, manipulate, and augment cellular machinery in real-time. In spite of the expanding impact of this platform technology, broad adaptation has remained slow due to technical nuances in the implementation of the methods. Through this effort, we aim to provide simplicity and clarity for establishing this technology in new labs. Toward this end, our protocol for an E. coli-based cell-free protein synthesis platform can be achieved within a startup time of four-days by laboratory trained non-experts, such as undergraduate students (Figure 1). Additionally, once a stock of reagents and extract are produced, subsequent CFPS batch reactions can be set up, incubated, and quantified in just 5 h. A single, 1 L cell growth can result in enough extract for four hundred 15 µL CFPS reactions, while single batch preparations of the other cell-free reagents can support thousands of reactions. Reagent preparations can also be scaled up if an even larger stock is needed. The CFPS reactions can be setup in a high-throughput manner, by using a 96-well plate or PCR tubes for testing of a variety of conditions in parallel. Volumetric yields will decrease when using smaller vessels as seen in Figure 2C. CFPS reactions can also be scaled up from microliters to tens of milliliters of total reaction volume in order to increase the total protein yield for a single condition. When scaling up volume, the primary consideration is that volumetric reaction yields decrease as the surface area-to-volume ratio of the reaction decreases37,52. In order to scale-up while maintaining similar volumetric yields of protein expression, users should split the reaction volume into numerous reaction vessels and/or increase vessel size. For reaction scales ranging from 15 µL – 100 µL in volume, numerous 15 µL reactions in parallel are recommended. For reactions exceeding 100 µL in volume, flat-bottom 24-well plates are recommended, and 12-well plates are recommended for reaction volumes exceeding 600 µL. Such pairings of reaction volumes and vessels provide consistency in volumetric reaction yields upon scale-up17,31,37,52. Scaling up beyond these volumes can be accomplished by utilizing multiple wells of the plate in parallel. Using this format, the reaction can be scaled to over 10 mL total volume. Optimizing the reaction volume-reaction vessel combination can support applications of biomanufacturing without sacrificing the productivity of the reaction.
When performing this protocol, there are a few key considerations that impact volumetric reaction yields as well as indicators associated with poorly performing extract. In order to ensure proper lysis and to prevent denaturation of functional transcription/translation machinery, it is important to mitigate the heat produced during lysis. Immerse the cell resuspension in an ice water bath during sonication to rapidly dissipate heat during sonication (Figure 3A). An indicator of effective cell lysis is the emergence of a darker appearance of the cell lysate compared to pre-sonicated samples (Figure 3B). For user flexibility, the sonicator and probe shown in Figure 3A is adaptable to a range of volumes from 100 µL to 15 mL of resuspended cells. To accomplish this, the user can adjust the number of joules delivered for lysis of the desired volume of cells. Additionally, larger volumes of extract can be prepared through two complementary approaches. Users can sonicate multiple tubes in parallel, and/or sonicate larger volumes of cell resuspension, scaling the amount of energy proportionally with the volume as previously described29,45. Another step that indicates extract quality is the centrifugation step following cell lysis. Post cell lysis, we recommend centrifugation at 18,000 x g to provide a clear division between the supernatant (transcription/translation machinery, fragmented genomic DNA which no longer functions to template transcription/translation) and the pellet (undesired cellular components such as the cell membrane and precipitated proteins) (Figure 3C). We have found that centrifugation at 18,000 x g improves separation, resulting in improved reproducibility compared to spins at lower speeds such as 12,000 x g. For convenience, we recommend using a table-top refrigerated centrifuge, capable of achieving a minimum of 12,000 x g. This step is also commonly performed at 30,000 x g, which should be considered if the appropriate equipment is available54,55,56,57,58,59,60. Extract performance is not affected by centrifugation speeds at this step given that proper separation is achieved. When removing the desired supernatant, it is best to avoid any cloudy materials that exist at the boundary between the supernatant and pellet since this contamination will reduce the productivity of the extract. Aiming for purity of the supernatant results in more productive extracts and is worth the reduced quantity of extract obtained for new users.
It is important to note that while the methods we have presented are reproducible and can be executed by scientists with minimal expertise, there can be batch-to-batch and reaction-to-reaction variation. This may be attributed to variation in the proteomic composition of the lysate post-sonication61. The batch-to-batch variability that we have observed is generally diminished upon supplementation with T7RNAP and optimization of magnesium concentrations. Exogenous addition of T7RNAP is common among CFPS reactions to support optimal protein expression, and we find that having two sources of T7RNAP – endogenous expression in BL21*(DE3) and the supplemental T7RNAP to a final concentration of 16 µg/mL – improves batch-to-batch reproducibility for new users45,46. With experience, users can modify their experiments to utilize only a single source of T7RNAP if desired. Quantification of total protein content of a new batch of extract and appropriate adjustment of Mg2+ concentration may also help to diminish batch-to-batch variation in volumetric protein expression yields. Variations in protein expression can also be due to differences in the size and structure of the protein of interest, the codon usage of the gene and its corresponding ribosome binding site of the gene of interest, as well as the type of expression vector used62,63. For these reasons, some proteins may not express as well as the model protein sfGFP, resulting in reduced volumetric yields from CFPS reactions.
Limitations of the presented CFPS technique include that it may not be directly suitable to all applications of cell-free, such as metabolic engineering and tuning of expression conditions, without additional modifications to the protocols. However, we believe that this protocol will provide a basis for establishing the CFPS platform in new laboratories and provide non-experts with the ability to implement introductory cell-free reactions in their labs. After initial implementation, researchers can experiment with the platform to make their own modifications for more specific applications based on other literature in the field.
The CFPS platform costs $0.021/µg protein (excluding the cost of labor and equipment), making our system competitively priced with commercial kits without compromising ease of reaction setup. Assessments of comparative costs per µL of reaction show similar trends (Supplemental Figure 1). We estimate startup costs to be ~$4,500 for all reagents, and an additional $3,200 for specialized equipment, such as a sonicator. Person hours to complete this procedure are estimated to be ~26 h for all reagent prep from the ground up. However, once large stocks of reagents have been prepared, demands on labor diminish substantially. Additionally, as experience with the platform is gained, we recommend scaling up the size of the cell growth, extract preparation, and reagent preparation to maximize time efficiency. Given the startup costs, we recommend the CFPS platform for applications in synthetic biology, high-throughput efforts, and protein expression conditions that are incompatible with traditional protein expression platforms due to conflict with the cell's biochemistry and viability constraints. In these specialized cases where the desired technique is enabled by the CFPS platform, the greater cost of CFPS over in vivo expression is justified.
Continued development of the CFPS platform is likely to provide broader utility to biotechnology efforts such as the metabolic engineering of enzymatic pathways, production and characterization of traditionally intractable proteins, nonstandard amino acid incorporation and unnatural protein expression, stratified medicine manufacturing, and expanding beyond the laboratory into the classroom for STEM education64,65,66. These efforts will be further supported by the ongoing efforts for detailed characterization of the CFPS platform. A better understanding of the composition of the cell extract will lead to continued refinement toward improved reaction yields and flexibility in reaction conditions61,67,68.
The authors have nothing to disclose.
Authors would like to acknowledge Dr. Jennifer VanderKelen, Andrea Laubscher, and Tony Turretto for technical support, Wesley Kao, Layne Williams, and Christopher Hight for helpful discussions. Authors also acknowledge funding support from the Bill and Linda Frost Fund, Center for Applications in Biotechnology's Chevron Biotechnology Applied Research Endowment Grant, Cal Poly Research, Scholarly, and Creative Activities Grant Program (RSCA 2017), and the National Science Foundation (NSF-1708919). MZL acknowledges the California State University Graduate Grant. MCJ acknowledges the Army Research Office W911NF-16-1-0372, National Science Foundation grants MCB-1413563 and MCB-1716766, the Air Force Research Laboratory Center of Excellence Grant FA8650-15-2-5518, the Defense Threat Reduction Agency Grant HDTRA1-15-10052/P00001, the David and Lucile Packard Foundation, the Camille Dreyfus Teacher-Scholar Program, the Department of Energy BER Grant DE-SC0018249, the Human Frontiers Science Program (RGP0015/2017), the DOE Joint Genome Institute ETOP Grant, and the Chicago Biomedical Consortium with support from the Searle Funds at the Chicago Community Trust for support.
Luria Broth | ThermoFisher | 12795027 | |
Tryptone | Fisher Bioreagents | 73049-73-7 | |
Yeast Extract | Fisher Bioreagents | 1/2/8013 | |
NaCl | Sigma-Aldrich | S3014-1KG | |
Potassium Phosphate Dibasic | Sigma-Aldrich | 60353-250G | |
Potassium Phosphate Monobasic | Sigma-Aldrich | P9791-500G | |
D-Glucose | Sigma-Aldrich | G8270-1KG | |
KOH | Sigma-Aldrich | P5958-500G | |
IPTG | Sigma-Aldrich | I6758-1G | |
Mg(OAc)2 | Sigma-Aldrich | M5661-250G | |
K(OAc) | Sigma-Aldrich | P1190-1KG | |
Tris(OAc) | Sigma-Aldrich | T6066-500G | |
DTT | ThermoFisher | 15508013 | |
tRNA | Sigma-Aldrich | 10109541001 | |
Folinic Acid | Sigma-Aldrich | F7878-100MG | |
NTPs | ThermoFisher | R0481 | |
Oxalic Acid | Sigma-Aldrich | P0963-100G | |
NAD | Sigma-Aldrich | N8535-15VL | |
CoA | Sigma-Aldrich | C3144-25MG | |
PEP | Sigma-Aldrich | 860077-250MG | |
K(Glu) | Sigma-Aldrich | G1501-500G | |
NH4(Glu) | MP Biomedicals | 02180595.1 | |
Mg(Glu)2 | Sigma-Aldrich | 49605-250G | |
Spermidine | Sigma-Aldrich | S0266-5G | |
Putrescine | Sigma-Aldrich | D13208-25G | |
HEPES | ThermoFisher | 11344041 | |
Molecular Grade Water | Sigma-Aldrich | 7732-18-5 | |
L-Aspartic Acid | Sigma-Aldrich | A7219-100G | |
L-Valine | Sigma-Aldrich | V0500-25G | |
L-Tryptophan | Sigma-Aldrich | T0254-25G | |
L-Phenylalanine | Sigma-Aldrich | P2126-100G | |
L-Isoleucine | Sigma-Aldrich | I2752-25G | |
L-Leucine | Sigma-Aldrich | L8000-25G | |
L-Cysteine | Sigma-Aldrich | C7352-25G | |
L-Methionine | Sigma-Aldrich | M9625-25G | |
L-Alanine | Sigma-Aldrich | A7627-100G | |
L-Arginine | Sigma-Aldrich | A8094-25G | |
L-Asparagine | Sigma-Aldrich | A0884-25G | |
Glycine | Sigma-Aldrich | G7126-100G | |
L-Glutamine | Sigma-Aldrich | G3126-250G | |
L-Histadine | Sigma-Aldrich | H8000-25G | |
L-Lysine | Sigma-Aldrich | L5501-25G | |
L-Proline | Sigma-Aldrich | P0380-100G | |
L-Serine | Sigma-Aldrich | S4500-100G | |
L-Threonine | Sigma-Aldrich | T8625-25G | |
L-Tyrosine | Sigma-Aldrich | T3754-100G | |
Fisherbrand Premium Microcentrifuge Tubes: 2.0 mL | Fisher Scientific | 05-408-138 | |
Fisherbrand Premium Microcentrifuge Tubes: 1.5 mL | Fisher Scientific | 05-408-129 | |
Fisherbrand Premium Microcentrifuge Tubes: 0.6 mL | Fisher Scientific | 05-408-120 | |
PureLink HiPure Plasmid Prep Kit | ThermoFisher | K210007 | |
Ultrasonic Processor | QSonica | Q125-230V/50Hz | 3.175 mm diameter probe |
Avanti J-E Centrifuge | Beckman Coulter | 369001 | |
JLA-8.1000 Rotor | Beckman Coulter | 366754 | |
1L Centrifuge Tube | Beckman Coulter | A99028 | |
Tunair 2.5L Baffeled Shake Flask | Sigma-Aldrich | Z710822 | |
Microfuge 20 | Beckman Coulter | B30134 | |
New Brunswick Innova 42/42R Incubator | Eppendorf | M1335-0000 | |
Cytation 5 | BioTek | ||
Strep-Tactin XT Starter Kit | IBA | 2-4998-000 | |
pJL1-sfGFP | Addgene | 69496 | |
BL21(DE3) | New England BioLabs |