O9-1 is a multipotent mouse neural crest cell line. Here we describe detailed step-by-step protocols for culturing O9-1 cells, differentiating O9-1 cells into specific cell types, and genetically manipulating O9-1 cells by using siRNA-mediated knockdown or CRISPR-Cas9 genome editing.
Neural crest cells (NCCs) are migrating multipotent stem cells that can differentiate into different cell types and give rise to multiple tissues and organs. The O9-1 cell line is derived from the endogenous mouse embryonic NCCs and maintains its multipotency. However, under specific culture conditions, O9-1 cells can differentiate into different cell types and be utilized in a wide range of research applications. Recently, with the combination of mouse studies and O9-1 cell studies, we have shown that the Hippo signaling pathway effectors Yap and Taz play important roles in neural crest-derived craniofacial development. Although the culturing process for O9-1 cells is more complicated than that used for other cell lines, the O9-1 cell line is a powerful model for investigating NCCs in vitro. Here, we present a protocol for culturing the O9-1 cell line to maintain its stemness, as well as protocols for differentiating O9-1 cells into different cell types, such as smooth muscle cells and osteoblasts. In addition, protocols are described for performing gene loss-of-function studies in O9-1 cells by using CRISPR-Cas9 deletion and small interfering RNA-mediated knockdown.
Neural crest cells (NCCs) are multipotent stem-like cells with a remarkable migratory ability and transient existence during embryonic development. NCCs originate between the surface ectoderm and the neural tube and migrate to other parts of the embryo during embryonic development1. Based on their functional domains, NCCs can be classified into several different types, including cranial, trunk, vagal, sacral, and cardiac NCCs. In addition, NCCs can differentiate into multiple cell lineages, such as smooth muscle cells, bone cells, and neurons, and give rise to various tissues2,3. The development of NCCs is characterized by a complex series of morphogenetic events that are fine-tuned by various molecular signals. Given the complex regulation of NCCs and their important contributions to numerous structures, the dysregulation of NCC development can commonly lead to congenital birth defects, which account for nearly 30% of all human congenital birth defects. Abnormalities during the neural crest development can lead to cleft lip/palate, flawed nose formation, syndromes, defects such as a defective cardiac outflow tract, or even infant mortality1,4,5,6,7. Understanding the molecular mechanisms of NCC development is important for developing treatments for diseases caused by defects in NCC development. With the use of various in vitro and in vivo approaches8,9,10,11,12,13,14,15, considerable progress has been made in NCC research. In vivo, animal models, including chickens, amphibians, zebrafish, and mice, have been used to investigate NCCs1. Furthermore, human embryos have been used to study the process of NCC migration in early human embryo development16. In vitro, cell models for NCCs, such as human NCCs that originated from patient subcutaneous fat, have been used to investigate Parkinson's disease17. The O9-1 NCC line, which was originally derived from mass cultures of endogenous NCCs isolated from E8.5 mouse embryos18, is a powerful cell model for studying NCCs. Importantly, under non-differentiating culture conditions, O9-1 cells are multipotent stem-like NCCs. However, under varying culture conditions, O9-1 cells can be differentiated into distinguished cell types, such as smooth muscle cells, osteoblasts, chondrocytes, and glial cells18. Given these properties, O9-1 cells have been broadly used for NCC-related studies, such as investigating the molecular mechanism of cranial-facial defects19,20.
Here, detailed protocols are provided for maintaining O9-1 cells, differentiating O9-1 cells into different cell types, and manipulating O9-1 cells by performing gene loss-of-function studies with CRISPR-Cas9 genome editing and small interfering RNA (siRNA)-mediated knockdown technologies. As a representative example, the use of O9-1 cells to study Yap and Taz loss-of-function is described. Yap and Taz are the downstream effectors of the Hippo signaling pathway, which plays a critical role in the cell proliferation, differentiation, and apoptosis. The Hippo pathway has also been shown to be important in the development and homeostasis of several different tissues and organs, as well as in the pathogenesis of different diseases20,21,22,23,24,25,26,27,28. The core components of Hippo signaling include the tumor suppressor sterile 20-like kinases Mst1/2, WW domain-containing Salvador scaffold protein, and the large tumor suppressor homolog (Lats1/2) kinases. Hippo signaling inhibits Yap and Taz activity and promotes their degradation in the cytoplasm. Without repression from Hippo, Yap and Taz can translocate into nuclei and function as transcriptional co-activators. We recently showed that specifically inactivating the Hippo signaling effectors Yap and Taz in mouse NCCs by using the Wnt1cre and Wnt1Cre2SOR drivers resulted in embryonic lethality at E10.5 with severe craniofacial defects20. We have also performed studies using O9-1 cells to investigate the role of Yap and Taz in NCCs. To study Yap and Taz function in NCC proliferation and differentiation, Yap and Taz knockdown cells were generated in O9-1 cells by using siRNA, and Yap knockout cells were generated by using CRISPR-Cas9 genome editing. The same gene loss-of-function strategies can be applied to different target genes in other pathways. In addition, gain-of-function studies and transfection assays can also be applied to O9-1 cells to study gene function and regulation. The protocols described here are intended to be used by investigators as guides for culturing O9-1 cells to maintain multipotent stemness, for differentiating O9-1 cells into other cell types under different culture conditions, and for studying gene function and the molecular mechanisms of NCCs.
1. Preparation Before O9-1 Cell Culture
NOTE: Basal media used for O9-1 cell culture must have been conditioned by Sandos inbred mice thioguanine/ouabain-resistant (STO) mouse fibroblast cells; therefore, STO cells need to be obtained and prepared as described below before starting O9-1 cell culture.
2. O9-1 Cell Culture
3. Maintaining O9-1 Cells
NOTE: Working O9-1 basal media is filter sterilized conditioned basal media, to which LIF (final concentration 103 units/mL) and bFGF (final concentration 25 ng/mL) are added immediately to the cell culture dish before use. This media needs to be protected from light and stored at 4 °C.
4. Manipulation of O9-1 cells
5. O9-1 cell differentiation
The goal of our knockdown and knockout experiments was to study the effects of Yap and Taz loss-of-function in O9-1 cells. Before the knockdown and knockout experiments, we have to make sure that prepare for basal media and culture O9-1 cells as described above (for example, basement membrane matrix needs to cover the whole plate as shown in Figure 1, and O9-1 cells recovered from liquid nitrogen as shown in Figure 2). We performed knockdown experiments as described above in which Yap and Taz were simultaneously knocked down. Equal amounts of Yap siRNA and Taz siRNA were added to the final volume recommended by the manufacturer. To the control plate, an equal volume of nontargeting siRNA was added.
A Yap-null O9-1 cell line was generated by deleting exon 3 of Yap by using CRISPR/Cas9 genome editing, as described by Wang et al.20. We performed knockout experiments by using CRISPR-Cas9 genome editing as described above and in Wang et al.20. We used the following sgRNA sequences, which flanked exon 3 of Yap: 5′-caccgtggattacgtgggtatgtt-3′ (sgRNA1-forward), 5′- aaacaacatacccacgtaatccac-3′ (sgRNA1-reverse), 5′-caccgagatggtctaatgtagtga-3′ (sgRNA2-forward), 5′-aaactcactacattagaccatctc-3′ (sgRNA2-reverse)
CACC was added to the forward strand, and AAAC was added to the reverse strand. G was added at the 5' end of the forward strand because the oligo did not begin with G, and C was added to the 3' end of the reverse strand. During the CRISPR-Cas9 genome editing steps described above and in Wang et al.20, cells were in conditioned basal media for O9-1 cells supplemented with LIF and bFGF to avoid unwanted differentiation. The following PCR primers were used for detecting the Yap deletion: 5′-AAAACAGTCTCCACTACCCCTT-3′ (forward) and 5′-GGCCATCATAGATCCTGGACG-3′ (reverse). The position of the sgRNAs is from base #7973399 to #7974433 on mouse chromosome 9. The PCR primer position on the chromosome is from base #7973306 to #7974478. After PCR, the PCR band for the Yap knockout with exon 3 deleted appeared as a 138-bp band on an agarose gel; wild-type Yap appeared as an 1173-bp band. The efficiency of Yap knockout by using CRISPR-Cas9 genome editing was validated with Western blotting, as shown in Figure 3.
As described above, O9-1 cells can be cultured in specific differentiation-inducing media to promote differentiation into particular cell types. Evaluation of differentiation can be done by using various approaches, such as quantitative PCR or immunostaining of specific cell markers. As an example, Figure 4 shows O9-1 cells that were cultured in osteoblast-inducing media and differentiated into osteoblasts, which were evaluated by immunostaining cells with the antibody against osteocalcin (Ocn, an osteoblast marker). Combined with the gene knockdown and knockout experiments described above, O9-1 cells can be broadly used for gene function studies and phenotypic analyses. As an example, both wild-type and Yap-null O9-1 cells were cultured in smooth muscle cell differentiation media and evaluated by immunostaining cells with the antibody against smooth muscle actin (SMA, a smooth muscle cell marker). Most wild-type O9-1 cells gave rise to SMA-positive smooth muscle cells (Figure 5A), whereas, Yap-null O9-1 cells failed to differentiate into SMA-positive smooth muscle cells (Figure 5B), which indicated that Yap plays a critical role in the differentiation of NCCs into smooth muscle cells.
Figure 1: Matrigel fully covering a 35 mm plate. Please click here to view a larger version of this figure.
Figure 2: O9-1 cells 24 h after recovery from liquid nitrogen. Please click here to view a larger version of this figure.
Figure 3: Western blot data showing the efficient knockout (ko) of Yap in O9-1 cells by using CRISPR-Cas9 genome editing. wt: wild-type. Please click here to view a larger version of this figure.
Figure 4: Immunofluorescence staining of osteoblast marker osteocalcin (Ocn) indicating that O9-1 cells gave rise to osteoblast cells under osteogenic differentiation conditions. Cells were stained with osteoblast marker Ocn antibody (green), and nuclei were stained with DAPI (blue). Arrows indicate Ocn-positive cells. Osteocalcin (Ocn, an osteoblast marker); DAPI (′,6-diamidino-2-phenylindole). Please click here to view a larger version of this figure.
Figure 5. Immunofluorescence staining of smooth muscle actin (SMA) indicating that, under smooth muscle cell differentiation conditions, most wild-type O9-1 cells gave rise to smooth muscle cells (A), whereas Yap-null O9-1 cells failed to differentiate into smooth muscle cells (B). Cells were stained with SMA antibody (red), and nuclei were stained with DAPI (blue). Arrows indicate SMA-positive cells. Please click here to view a larger version of this figure.
The NCC is a versatile and key contributor to different tissues and organs during embryonic morphogenesis.The O9-1 cell line maintains its potential to differentiate into many different cell types and mimics the in vivo characteristics of NCCs, making it a useful in vitro tool for studying gene function and molecular regulation in NCCs. The different status of O9-1 cells may correspond to different neural crest progeny in vivo, depending on the culture conditions of O9-1 cells. O9-1 cells can be maintained in the multipotent state when cultured under non-differentiating culture conditions, similar to regular stem cell culture. The non-differentiating O9-1 cells may correspond to pre-migratory and migratory multipotent stem-like NCCs in vivo. Furthermore, O9-1 cells can differentiate into many different cell types under specific differentiation culture conditions, which is an important advantage for studying gene function and regulation during the differentiation of NCCs from multipotent stem cells into a specific differentiated cell type. The differentiating O9-1 cells may correspond to post-migratory neural crest progeny in vivo, which have a different cell fate to differentiate into various cell types. Depending on the research interest, O9-1 cells can be manipulated and cultured differently to complement in vivo NCC studies with animal models.
There are various ways to manipulate O9-1 cells to study NCC events, including gene loss-of-function and gain-of-function. Here, examples are presented in which siRNA knockdown and CRISPR-Cas 9 gene editing experiments were performed in O9-1 cells for Hippo pathway effector Yap loss-of-function studies20. With the combined use of a mouse model and O9-1 cells, our study indicated that Yap plays a critical role in regulating NCC proliferation and differentiation into smooth muscle cells20. Other studies in different models have also indicated an important role for Yap in NCCs. Yap was shown to be required for mouse neural crest smooth muscle differentiation31 and to enhance human NCC fate and migration32. Furthermore, Yap is expressed during early Xenopus development33. The efficiency of gene knockdown and knockout in O9-1 cells, combined with the convenience of performing other downstream molecular techniques such as quantitative PCR (qPCR), Western blotting, and immunostaining supports that the O9-1 cell line is an excellent NCC model that can be easily manipulated in vitro. In addition to the loss-of-function studies we have described above and previously20, various other applications of O9-1 cells have been described for studying NCCs. O9-1 cells can be used as an efficient alternative for experiments that require a relatively large amount of tissue, such as chromatin immunoprecipitation sequencing (ChIP-seq). However, many in vivo cell events such as NCC migration rely on complex tissue-to-tissue interactions, so it remains unclear how well O9-1 cells can accurately mimic in vivo NCC migration. Because of the limitations of in vitro studies with O9-1 cells, it is recommended to validate observations made with O9-1 cells in vivo by using animal models.
When using the O9-1 cell line to study NCCs in vitro, maintaining the multipotency of the cells during routine culture is critical. The multipotency of O9-1 cells can be tested at the beginning of culture by evaluating the expression of NCC marker genes such as AP-2a and Sox9. Similarly, the differentiation ability of O9-1 cells can be tested by differentiating them into specific cell types. To avoid unwanted differentiation during the routine culturing of O9-1 cells, the experimental procedures must be carried out in a manner consistent with the established protocol described here. Careful preparation of the conditioned basal media and the fresh addition of the correct concentrations of LIF and bFGF are critical for maintaining the multipotency of O9-1 cells. In addition, the experimental timeline needs to be carefully planned, given that culturing O9-1 cells requires first preparing inactive feeder STO cells and collecting conditioned basal media, which is good for only about one month. Previous studies have shown that Basement membrane matrix is important for maintaining the differentiation potential of muscle and neural precursor cells, as well as mesenchymal stem cells34,35,36. In the context of the protocol described here, Basement membrane matrix provides a platform for O9-1 cells to attach and helps maintain differentiation potential. Therefore, Basement membrane matrix is an important factor that may affect experimental results and their consistency when repeated. We recommend preparing Basement membrane matrix strictly according to the protocol described above and avoiding multiple freeze-thaw cycles of the Basement membrane matrix. Also, when recovering O9-1 cells from the frozen state to culture, the process of moving the cells from liquid nitrogen to a 37 °C water bath needs to be done quickly, avoiding any vortexing during the entire process. In addition, the overgrowth of O9-1 cells also needs to be avoided to maintain the multipotency of O9-1 cells. When passaging O9-1 cells, ensure that the trypsin concentration is diluted to 0.05% instead of 0.25% and that cells appear properly dissociated. Repeatedly pipetting very gently to achieve a single-cell suspension is necessary for avoiding the formation of aggregated cells. In general, the entire process of handling the O9-1 cell line needs to be done gently and carefully.
In summary, the O9-1 cell line is a very useful tool for studying NCCs in vitro, especially when used as a method complementary to in vivo studies of NCCs. O9-1 cells have obvious advantages such as the ease with which they can be accessed and the ease with which sufficient cell numbers can be obtained for experiments. Given the differentiation capabilities of O9-1 cells, they have great potential for use in a wide range of applications in various fields of research. O9-1 cells can be conveniently used for applications such as quick drug testing and screening, ChIP-seq, transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) and RNA sequencing (RNA-Seq), gene gain-of-function and loss-of-function studies, as well as signaling regulation studies. The use of a standardized and complete protocol for the handling of O9-1 cells will facilitate the reproducibility of studies in which they are used.
The authors have nothing to disclose.
Nicole Stancel, Ph.D., ELS, of Scientific Publications at the Texas Heart Institute, provided editorial support. We also thank the following funding sources: the American Heart Association's National Center Scientist Development Grant (14SDG19840000 to J. Wang), the 2014 Lawrence Research Award from the Rolanette and Berdon Lawrence Bone Disease Program of Texas (to J. Wang), and the National Institutes of Health (DE026561 and DE025873 to J. Wang, DE016320 and DE019650 to R. Maxson).
Active STO feeder cells | ATCC | ATCC CRL-1503 | Also available in mitomycin C-inactivated form, catalog # ATCC 56-X |
O9-1 mouse cranial neural crest cell line | Millipore Sigma | SCC049 | |
DMEM, high glucose, no glutamine | Gibco | 11960-044 | |
DMEM, high glucose | Hyclone | SH30243.01 | |
FBS (fetal bovine serum) | Millipore Sigma | ES-009-B | |
Penicillin – streptomycin | Gibco | 15140-122 | |
L-glutamine 200mM (100X) | Gibco | 25030-081 | |
Gelatin from porcine skin | Sigma | G1890 | |
Trypsin-EDTA 0.25% in HBSS | Genesee Scientific | 25-510 | |
DPBS (Dulbecco's phosphate buffered saline) without calcium or magnesium | Lonza | 17-512F | |
MEM non-essential amino acids (MEM NEAA) 100X | Gibco | 11140-050 | |
Sodium pyruvate (100mM) | Gibco | 11360-070 | |
2-Mercaptoethanol | Sigma | M-7522 | |
ESGRO leukemia inhibitory factor (LIF) 106 unit/ml | Millipore Sigma | ESG1106 | |
Recombinant human fibroblast growth factor-basic (rhFGF-basic) | R&D Systems | 233-FB-025 | |
Mitomycin C | Roche | 10107409001 | |
Matrigel matrix | Corning | 356234 | |
DMSO (dimethylsulfoxide) | Millipore Sigma | MX1458-6 | |
Lipofectamine RNAiMAX | Thermo Fisher Scientific | 13778-075 | |
Opti-MEM I (1X) | Gibco | 31985-070 | |
Minimum essential medium, alpha 1X with Earle's salts, ribonucleosides, deoxyribonucleosides, & L-glutamine | Corning | 10-022-CV | |
ON-TARGETplus Wwtr1 siRNA | Dharmacon | L-041057 | |
ON-TARGETplus Non-targeting Pool | Dharmacon | D-001810 | |
ON-TARGETplus Yap1 siRNA | Dharmacon | L-046247 | |
FCS (fetal calf serum) | |||
ITS (insulin-transferrin-selenium ) | |||
TGF-b3 | |||
Ascorbic acid | |||
BMP2 (bone morphogenetic protein 2) | |||
Dexamethasone | |||
B-27 supplement |