Here we present methodology for the clonal analysis of hematopoietic stem cell precursors during murine embryonic development. We combine index sorting of single cells from the embryonic aorta-gonad-mesonephros region with endothelial cell co-culture and transplantation to characterize the phenotypic properties and engraftment potential of single hematopoietic precursors.
The ability to study hematopoietic stem cell (HSC) genesis during embryonic development has been limited by the rarity of HSC precursors in the early embryo and the lack of assays that functionally identify the long-term multilineage engraftment potential of individual putative HSC precursors. Here, we describe methodology that enables the isolation and characterization of functionally validated HSC precursors at the single cell level. First, we utilize index sorting to catalog the precise phenotypic parameter of each individually sorted cell, using a combination of phenotypic markers to enrich for HSC precursors with additional markers for experimental analysis. Second, each index-sorted cell is co-cultured with vascular niche stroma from the aorta-gonad-mesonephros (AGM) region, which supports the maturation of non-engrafting HSC precursors to functional HSC with multilineage, long-term engraftment potential in transplantation assays. This methodology enables correlation of phenotypic properties of clonal hemogenic precursors with their functional engraftment potential or other properties such as transcriptional profile, providing a means for the detailed analysis of HSC precursor development at the single cell level.
Clonal studies have revealed heterogeneity in the long-term engraftment properties of adult HSCs, providing new insight into HSC subtypes and changes in HSC behavior during aging1. However, similar studies of embryonic HSCs and their precursors have been more challenging. During early embryonic development, HSCs arise from a population of precursors known as hemogenic endothelium in a transient process referred to as the endothelial to hematopoietic transition2. The first HSC, defined by their ability to provide robust, long-term multilineage engraftment following transplantation into conditioned adult recipients, are not detected until after embryonic day 10.5 (E10.5) in the murine embryo, at very low frequency3. During their development, precursors to HSC (pre-HSC) arising from hemogenic endothelium must undergo maturation prior to acquiring the properties of adult HSC which allow for efficient engraftment in transplantation assays4,5,6. Obscuring the study of rare HSC origin, a multitude of hematopoietic progenitors with erythroid, myeloid, and lymphoid potential are already detected prior to the emergence of HSC from pre-HSC7,8. Thus, distinguishing pre-HSC from other hematopoietic progenitors requires methods to clonally isolate cells and provide them with the signals sufficient for their maturation to HSC, to detect their engraftment properties in transplantation assays.
A number of approaches have been described which allow for the detection of pre-HSC by either ex vivo or in vivo maturation to HSC. Ex vivo methods have depended on culture of embryonic tissues, such as the AGM region, where the first HSC are detected in development9. Building on these methods, protocols which incorporate the dissociation, sorting, and re-aggregation of AGM tissues have permitted the characterization of sorted populations containing HSC precursors during development from E9.5 to E11.5 in the para-aortic splanchnopleura (P-Sp)/AGM regions4,5,10; however, these approaches are not amenable to high-throughput analysis of precursors at the single cell level required for clonal analysis. Similarly, in vivo maturation by transplantation into newborn mice, where the microenvironment is presumed to be more suitable for the support of earlier stages of HSC precursors, has also enabled studies of sorted populations from the yolk sac and AGM/P-Sp (P-Sp is the precursor region to the AGM) with characteristics of pre-HSC, but these methods also fail to provide a robust platform for single cell analysis11,12.
Studies from Rafii et al. demonstrated that Akt-activated endothelial cell (EC) stroma can provide a niche substrate for the support of adult HSC self-renewal in vitro13,14,15. We recently determined that Akt-activated EC derived from the AGM region (AGM-EC) provides a suitable in vitro niche for the maturation of hemogenic precursors, isolated as early as E9 in development, to adult-engrafting HSC, as well as the subsequent self-renewal of generated HSC16. Given that this system employs a simple 2-dimensional co-culture, it is readily adaptable for clonal analysis of the HSC potential of individually isolated hemogenic precursors.
We have recently reported an approach to assay the HSC potential of clonal hemogenic precursors by combining index sorting of individual hemogenic precursors from murine embryos with AGM-EC co-culture and subsequent functional analysis in transplantation assays17. Index sorting is a mode of fluorescence-activated cell sorting (FACS) that records (indexes) all phenotypic parameters (i.e., forward scatter (FSC-A), side scatter (SSC-A), fluorescence parameters) of each individually sorted cell such that these features can be retrospectively correlated to subsequent functional analysis following sorting. FACS software records both phenotypic information for each cell and the position/well of the 96-well plate into which it was placed. This technique has previously been elegantly used to identify heterogeneity in adult HSC, determine phenotypic parameters that further enrich for the long-term engrafting subset of HSC, and correlate phenotypic parameters of HSC with transcriptional properties at the single cell level18,19. Here, we provide detailed methodology of this approach that enables identification of unique phenotypic parameters and lineage contributions of pre-HSC during early stages of embryonic development.
All methods described here have been approved by the Institutional Animal Care and Use Committee (IACUC) of the Fred Hutchinson Cancer Research Center.
1. Preparation of AGM-EC Monolayers for Co-culture
2. Preparation of Single Cell Suspension from Murine Embryonic Tissues
3. Antibody Staining of Murine Embryonic Cells
4. Index Sorting of Single Hemogenic Precursors to 96-wells with AGM-EC Stroma for Co-culture
5. Analysis of Clonal Hematopoietic Progeny Following Co-culture
6. Analysis of Engraftment Properties of Individual Clones and Correlation with Phenotypic Properties Elucidated by Index Sorting
Figure 1A shows a schematic of the experimental design. Once P-Sp/AGM tissues are dissected, pooled, and dissociated in collagenase, they are stained with antibodies to VE-Cadherin and EPCR for index sorting. Pre-HSC are enriched in cells sorted at VE-Cadherin+EPCRhigh (Figure 1B). Other fluorochrome-conjugated antibodies can be included to retrospectively analyze additional phenotypic parameters, which are recorded for each cell during index sorting. In this representative experiment from E11 AGM, the cells are also stained with FITC-conjugated anti-CD45 and PE-conjugated anti-CD41 antibodies. Heterogeneity within the VE-Cadherin+EPCRhigh population for these hematopoietic-specific markers is observed (Figure 1C), consistent with the known asynchrony in hematopoietic development at this stage5.
Following index sorting of single VE-Cadherin+EPCRhigh AGM cells to individual 96-wells containing AGM-EC in AGM serum-free media and cytokines, colony formation occurs. Initially, sorted VE-Cadherin+EPCRhigh AGM cells integrate into the AGM-EC layer before they begin to round up and form hematopoietic clusters (Figure 2A, shown here from cells sorted from a transgenic murine embryo expressing GFP under the Ly6a promoter21, to distinguish them from the AGM-EC stroma). After 5-7 days of co-culture, colonies of various sizes and morphologies can be detected by inspection with an inverted microscope (Figure 2B), shown here from a representative experiment, 6 days following sorting from E11 AGM.
Next, phenotypic analysis by FACS is performed on half of the progeny of each VE-Cadherin+EPCRhigh cell which has formed a hematopoietic colony. Colonies containing cells with HSC phenotype are identified as VE-Cadherin-/lowGr1–F4/80–CD45+Sca1hiEPCRhi (Figure 3). Here, we show four different colonies obtained following co-culture of index-sorted E11 AGM VE-Cadherin+EPCRhigh cells, three containing different proportions of phenotypic HSC with other more differentiated cell types (Figure 3A–C), and the fourth lacking cells with HSC phenotype (Figure 3D). The number of colonies observed per number of cells plated and the percentage that resulted in engraftable stem cell colonies varies depending on the embryonic age and sort performed. VE-Cadherin-/lowGr1–F4/80–CD45+Sca1hiEPCRhi E11 AGM clones generated 53 ± 15 colonies out of 192 cells plated with 5% ± 1.3% of the 192 cells plated generating clones that engrafted long term (mean ± SD for 3 experiments).
To correlate the phenotype with engraftment potential, the remaining half of the progeny of each VE-Cadherin+EPCRhigh cell that has formed a hematopoietic colony containing cells with HSC phenotype detected by FACS (e.g., the colonies represented in Figure 3A–C) is transplanted to irradiated (1,000 cGy) adult congenic strain (B6 CD45.1) mice along with a dose of rescue cells from B6 CD45.1 marrow. Long-term multilineage engraftment is confirmed for each clone by following donor (CD45.2) contribution to the myeloid (Gr1 and F4/80), B-cell (CD19), and T-cell (CD3) compartment of the peripheral blood over time (Figure 4A). Although most colonies containing cells with HSC phenotype detected by FACS provide long-term engraftment, transplantation is necessary to confirm functional multilineage engraftment as some clones lose engraftment over time (Figure 4B), or display unique engraftment properties such as lymphoid-biased engraftment (data not shown). Once the functional HSC potential of each VE-Cadherin+EPCRhigh clone is determined, this is correlated back to that clone's index sorting parameters to identify its precise phenotypic characteristics. In this example, we see that functionally confirmed pre-HSC clones (red dots) are heterogeneous in their expression of CD41 and CD45, consistent with established dynamic expression of these markers during pre-HSC maturation to HSC (Figure 4C). Clones forming hematopoietic colonies but either lacking HSC potential by phenotypic screening or by absence of long-term, multilineage engraftment following transplantation (non-HSC hemogenic clones, blue dots) are also heterogeneous for CD41 and CD45, although a subset express higher levels of CD41 compared with pre-HSC clones, which are primarily CD41low. Clones that did not form hematopoietic colonies (non-hemogenic clones, light green dots) are predominantly CD41-/lowCD45–, which likely reflect non-hemogenic VE-Cadherin+EPCRhigh endothelial cells.
Figure 1: Protocol overview and representative flow cytometry analysis for index sorting of single cells. (A) Schematic representation of the protocol. (B) Flow cytometry analysis of dissociated E11 AGM cells showing gating strategy for index sorting of VE-Cadherin+EPCRhigh cells enriched for pre-HSC (analysis with FACS analysis software). Numbers in each gate represent the percent of cells. (C) Flow cytometry analysis showing CD41 and CD45 staining within the VE-Cadherin+EPCRhigh population. Please click here to view a larger version of this figure.
Figure 2: Formation of hematopoietic colonies during AGM-EC co-culture. (A) Time-lapse imaging of VE-Cadherin+EPCRhighGFP+ sorted cells from Ly6a-GFP transgenic embryos21 co-cultured on AGM-EC. Scale bars in µm are shown in bottom left of each image. (B) Representative colonies formed from VE-Cadherin+EPCRhigh index-sorted single cells after 6 days co-culture on AGM-EC. Please click here to view a larger version of this figure.
Figure 3: Flow cytometry analysis of the progeny of a single E11 AGM-derived VE-Cadherin+EPCRhigh cells following co-culture on AGM-EC. Gating for cells with HSC potential is shown as the subset that is VE-Cadherin-/lowGr1–F4/80– (left panel), CD45+ (middle panel), and Sca1hiEPCRhi (right panel). (A) Representative colony consisting of a homogeneous population of cells with the HSC phenotype. (B–C) Representative colonies containing a mix of cells with the HSC phenotype and more differentiated cell types. (D) Representative colony consisting of cells lacking the HSC phenotype. Please click here to view a larger version of this figure.
Figure 4: Analysis of peripheral blood engraftment of progeny of individual clones following AGM-EC co-culture and correlation with index sorting parameters. (A) Donor (CD45.2)-derived peripheral blood engraftment of myeloid (Gr1 and F4/80), B-cell (CD19), and T-cell (CD3) subsets from a representative recipient (B6 CD45.1) transplanted with progeny of individual E11 VE-Cadherin+EPCRhigh clone following AGM-EC co-culture. (B) Donor (CD45.2)-derived peripheral blood engraftment over time after transplantation of progeny of individual E11 VE-Cadherin+EPCRhigh clones following AGM-EC co-culture. (C) Correlation of CD41 and CD45 expression for each index sorted VE-Cadherin+EPCRhigh clone with its HSC potential following AGM-EC co-culture based on long-term, multilineage engraftment in transplantation assay. Please click here to view a larger version of this figure.
The study of HSC genesis during embryonic development necessitates means to detect HSC potential in hemogenic precursors yet lacking the competence to provide long-term multilineage hematopoietic reconstitution in transplanted adult recipients. In this protocol, we present a clonal assay of embryonic hemogenic precursors by stromal co-culture on vascular niche ECs from the AGM, which supports the maturation of precursors to HSC, with subsequent functional analysis in transplantation assays. Incorporation of index sorting permits the retrospective analysis of phenotypic parameters to characterize the properties of pre-HSC as defined by surface markers included in the assay. This approach thus provides an advantage over other methods that rely on bulk sorting of precursor populations with re-aggregation-based HSC assays4,5,10, enabling efficient screening for potential markers of pre-HSC while at the same time providing information about the relative expression level of surface markers for each individual cell. Using this methodology, for example, we previously reported that, in addition to the use of EPCR to enrich for pre-HSC populations at different stages of development, intermediate expression of the Notch ligand Dll4 further defined a subpopulation of clonal VE-Cadherin+EPCR+ precursors with HSC potential, whereas Dll4 negative VE-Cadherin+EPCR+ hemogenic precursors mostly lacked HSC potential17.
Another advantage of this method is the ability to screen for HSC potential immediately following co-culture based on the detection of hematopoietic progeny with a phenotype (VE-Cadherin-/lowGr1–F4/80–CD45+Sca1hiEPCRhi) that is correlated with long-term, multilineage engraftment. This eliminates the need to transplant colonies lacking hematopoietic progeny with this HSC phenotype, as these colonies do not provide long-term engraftment in transplantation assays. Furthermore, initial information distinguishing potential pre-HSC from hemogenic precursors lacking HSC potential immediately following co-culture, without the need to await results from long-term engraftment assays, is useful, for example, in rapidly screening candidate markers of HSC-precursors. However, the correlation of phenotypic data with long-term engraftment following transplantation provides additional valuable insights into variations of the precise engraftment properties of pre-HSC clones. We found, for example, that clonal pre-HSC from the P-Sp/AGM region between E9.5 and E11.5 have the unique potential to give rise to both B1a and B2-lymphocytes, whereas B1a-lymphocyte potential is deficient in adult HSC17. Furthermore, we detected an evolution in the engraftment properties of pre-HSC clones between E9.5 and E11.5 with earlier pre-HSC demonstrating a relative skew toward peritoneal B1a verses B2-lymphocyte engraftment and less robust self-renewal potential based on secondary transplantation assays17.
While this protocol provides a valuable approach to elucidate the unique properties of clonal HSC precursors, there are some limitations that must be acknowledged. Although detection of progeny with HSC phenotypic by FACS following AGM-EC co-culture is generally correlated to long-term multilineage engraftment, some colonies with this phenotype provide only short-term engraftment or engraftment deficient in one or more hematopoietic lineages (Figure 4B; data not shown). Thus, transplantation remains the gold standard in validating functional HSC. Furthermore, it cannot be ruled out that some of the differences in engraftment properties of pre-HSC clones, rather than reflecting cell-intrinsic differences in hemogenic precursor potential, may result from stochastic variability during AGM-EC co-culture in self-renewal verses differentiation decisions, as pre-HSC are simultaneously maturing to HSC and undergoing cell divisions. Indeed, this may in part account for the observed heterogeneity of colony morphology and phenotype of cells generated from individual pre-HSC clones (e.g., Figure 3A–C), and may result in an underestimation of pre-HSC by this assay if not all potential pre-HSC clones are detected by generation of functional HSC following AGM-EC co-culture. However, the ability to distinguish functionally distinct hemogenic clones by their differential expression of unique phenotypic markers (such as Dll417) enabled by this method provides a means to identify subpopulations of hemogenic precursors with inherent cell-intrinsic differences.
Building on this basic protocol, a number of extended applications can be included to further study hematopoietic potential of clonal hemogenic precursors during development. Beyond the use of antibodies for detection of surface markers, expression of fluorescence markers in transgenic embryos (e.g., Ly6a-GFP21 or Runx1-GFP22 expressed in hemogenic endothelium/pre-HSC) can be incorporated for index sorting of hemogenic precursors. In addition to transplantation assays following AGM-EC co-culture to detect putative pre-HSC, progeny can also be assessed for hematopoietic lineage potential based on secondary in vitro assays, such as culture on OP9 or OP9-Dl1 to detect B- and T-cell potential23, or clonogenic colony forming assays in methylcellulose to detect erythromyeloid potential. Indeed, some of the non-HSC hemogenic clones (e.g., Figure 3D) likely represent multipotent progenitors, erythromyeloid progenitors, or T- and B-cell progenitors previously described that precede and are independent of HSC development8,24,25,26,27,28, and this assay may further facilitate clonal studies of these distinct waves of hematopoietic precursors. Finally, index sorting of pre-HSC can be combined with other downstream analyses such as single cell RNA-sequencing, to correlate phenotypic properties with the global transcriptional profiles of developing HSC precursors. Altogether, this protocol provides a method for the robust analysis of clonal hematopoiesis from embryonic hemogenic precursors that should provide novel insights into HSC development.
The authors have nothing to disclose.
We would like to thank Andrew Berger, Stacey Dozono, and Brian Raden in the Fred Hutchinson Flow Cytometry Core for assistance with FACS. This work was supported by the National Institutes of Health NHLBI UO1 grant #HL100395, Ancillary Collaborative Grant #HL099997, and NIDDK grant #RC2DK114777. Brandon Hadland is supported by the Alex’s Lemonade Stand Foundation and Hyundai Hope on Wheels Foundation.
AGM-EC culture media | |||
Materials for culture of endothelial cells | |||
TrypLE Express | Gibco | 12605-028 | Use to dissociate AGM-EC monolayers |
Gelatin 0.1% in water | StemCell Technologies | 7903 | Use to adhere AGM-EC monolayers to plastic |
96-well tissue culture plates | Corning | 3599 | Use to co-culture AGM-EC monolayers and index sorted clones |
Dulbecco's Phosphate Buffered Saline (PBS) | Gibco | 14190-144 | Use for dissection and FACS staining |
500 ml filter bottles | Fisher Scientific | 9741202 | Use to sterile filter Endothelial media |
AGM-EC culture media (500 mls) | |||
Iscove's Modified Dulbecco's Medium (IMDM) | Gibco | 12440-053 | 400 mls |
Hyclone Fetal Bovine Serum | Fisher Scientific | SH30088.03 | 100 mls |
Penicillin Streptomycin | Gibco | 15140-122 | 5 mls |
Heparin | Sigma | H3149 | 50 mg dissolved in 10 mls media |
L-glutamine (200 mM) | StemCell Technologies | 7100 | 5 mls |
Endothelial Mitogen (ECGS) | Alfa Aesar | J64516 (BT-203) | Add 10 mls media to dissolve and add |
Materials for AGM index sort | |||
Collagenase (0.25%) | StemCell Technologies | 7902 | Use for dissociation of embryonic tissues |
3ml syringe | BD Biosciences | 309657 | Use to sterile filter antibody solutions for FACS |
0.22 µM syringe-driven filter | Millipore | SLGP033RS | Use to sterile filter antibody solutions for FACS |
5 ml polystyrene tube with cell-strainer cap | Corning | 352235 | Use to remove cell clumps prior to FACS |
DAPI (prepared as 1 mg/ml stock in H2O) | Millipore | 268298 | Use to exclude dead cells from sort |
anti-mouse CD16/CD32 (FcR block) | BD Biosciences | 553141 | Use to block non-specific staining to Fc receptors |
Antibodies for AGM index sort | |||
Anti-mouse CD144 PE-Cyanine7 | eBioscience | 25-1441-82 | Staining |
Rat IgG1 kappa Isotype Control, PE-Cyanine7 | eBioscience | 25-4301-81 | Isotype control for CD144 PE-Cyanine7 |
Anti-mouse CD201 (EPCR) PerCP-eFluor710 | eBioscience | 46-2012-80 | Staining |
Rat IgG2b kappa Isotype Control, PerCP-eFlour710 | eBioscience | 46-4031-80 | Isotype control for CD201 PerCP-eFluor710 |
Anti-mouse CD41 PE | BD Biosciences | 558040 | Staining |
Rat IgG1 kappa Isotype Control, PE | BD Biosciences | 553925 | Isotype control for CD41 PE |
Anti-mouse CD45 FITC | eBioscience | 11-0451-85 | Staining |
Rat IgG2b kappa Isotype Control, FITC | eBioscience | 11-4031-81 | Isotype control for CD45 FITC |
AGM-serum free media (10mls) | |||
X-Vivo 20 | Lonza | 04-448Q | 10 mls |
recombinant murine stem cell factor (SCF) | Peprotech | 250-03 | 10 ml (100 mg/ml stock) Final concentration 100 ng/ml |
recombinant human FLT3 Ligand (FLT3L) | Peprotech | 300-19 | 10 ml (100 mg/ml stock) Final concentration 100 ng/ml |
recombinant human thrombopoietin (TPO) | Peprotech | 300-18 | 2 ml (100 mg/ml stock) Final concentration 20 ng/ml |
recombinant murine interleukin-3 (IL3) | Peprotech | 213-13 | 2 ml (100 mg/ml stock) Final concentration 20 ng/ml |
Materials for Staining co-cultured cells | |||
96 well plate, V-bottom | Corning | 3894 | Use for FACS analysis |
Antibodies for analysis of Index sorted clones co-cultured with endothelial cells | |||
Anti-mouse CD45 PerCP-Cyanine5.5 | eBioscience | 45-0451-82 | Staining |
Rat IgG2b kappa Isotype Control, PE-Cyanine5.5 | eBioscience | 35-4031-80 | Isotype control for CD45 PerCP-Cyanine5.5 |
Anti-mouse CD201 (EPCR) PE | eBioscience | 12-2012-82 | Staining |
Rat IgG2b kappa Isotype Control, PE | eBioscience | 12-4031-81 | Isotype control for CD201 PE |
Anti-mouse Ly-6A/E (Sca-1) APC | eBioscience | 17-5981-83 | Staining |
Rat IgG2a kappa Isotype Control, APC | eBioscience | 17-4321-81 | Isotype control for Ly-6A/E APC |
Anti-mouse F4/80 FITC | eBioscience | 11-4801-81 | Staining |
Rat IgG2a kappa Isotype Control, FITC | eBioscience | 11-4321-41 | Isotype control for F4/80 FITC |
Anti-mouse Ly-6G/C (Gr1) FITC | BD Biosciences | 553127 | Staining |
Rat IgG2b kappa Isotype Control, FITC | BD Biosciences | 556923 | Isotype control for Ly-6G/C and CD3 FITC |
Materials for tail vein injection for transplant | |||
1/2 ml insulin syringes with 29G 1/2" needles | BD Biosciences | 309306 | Use for tail vein injection for transplantation |
Antibodies for Peripheral Blood analysis following translant | |||
Anti-mouse Ly-6G/C (Gr1) PerCP | Biolegend | 108426 | Staining |
Rat IgG2b kappa Isotype Control, PerCP | Biolegend | 400629 | Isotype control for Ly-6G/C PerCP |
Anti-mouse F4/80 PE | eBioscience | 12-4801-82 | Staining |
Rat IgG2a kappa Isotype Control, PE | eBioscience | 12-4321-80 | Isotype control for F4/80 PE |
Anti-mouse CD3 FITC | BD Biosciences | 555274 | Staining |
Anti-mouse CD19 APC | BD Biosciences | 550992 | Staining |
Rat IgG2a kappa Isotype Control, APC | BD Biosciences | 553932 | Isotype control for CD19 APC |
Anti-mouse CD45.1 (A20) PE-Cyanine7 | eBioscience | 25-0453-82 | Staining |
Rat IgG2a kappa Isotype Control, PE-Cyanine7 | eBioscience | 25-4321-81 | Isotype control for CD45.1 PE-Cyanine7 |
Anti-mouse CD45.2 (104) APC-eFluor780 | eBioscience | 47-0454-82 | Staining |
Rat IgG2a kappa Isotype Control, APC-eFluor780 | eBioscience | 47-4321-80 | Isotype control for CD45.2 APC-eFluor780 |
Equipment | |||
BD FACSAria II with DIVA software | BD Biosciences | ||
BD FACSCanto II with plate reader | BD Biosciences | ||
Haemocytometer | Fisher Scientific | S17040 | For counting cells |
Multi-channel pipette | Fisher Scientific | 14-559-417 | For dispensing cells |
FACS analysis software | FlowJo/BD Biosciences | https://www.flowjo.com/solutions/flowjo |