A protocol for fabricating nanoporous anodic aluminum oxides via simultaneous multi-surfaces anodization followed by stair-like reverse biases detachments is presented. It can be applied repeatedly to the same aluminum substrate, exhibiting a facile, high-yield, and environmentally clean strategy.
After reporting on the two-step anodization, nanoporous anodic aluminum oxides (AAOs) have been widely utilized in the versatile fields of fundamental sciences and industrial applications owing to their periodic arrangement of nanopores with relatively high aspect ratio. However, the techniques reported so far, which could be only valid for mono-surface anodization, show critical disadvantages, i.e., time-consuming as well as complicated procedures, requiring toxic chemicals, and wasting valuable natural resources. In this paper, we demonstrate a facile, efficient, and environmentally clean method to fabricate nanoporous AAOs in sulfuric and oxalic acid electrolytes, which can overcome the limitations that result from conventional AAO fabricating methods. First, plural AAOs are produced at one time through simultaneous multi-surfaces anodization (SMSA), indicating mass-producibility of the AAOs with comparable qualities. Second, those AAOs can be separated from the aluminum (Al) substrate by applying stair-like reverse biases (SRBs) in the same electrolyte used for the SMSAs, implying simplicity and green technological characteristics. Finally, a unit sequence consisting of the SMSAs sequentially combined with SRBs-based detachment can be applied repeatedly to the same Al substrate, which reinforces the advantages of this strategy and also guarantees the efficient usage of natural resources.
AAOs which were formed by anodizing Al substrate in an acidic electrolyte, have attracted great interest in diverse fundamental science and industry, for example, hard templates for nanotubes/nanowires1,2,3,4,5, energy storage devices6,7,8,9, bio-sensing10,11, filtering applications12,13,14, masks for evaporating and/or etching15,16,17, and capacitive humidity sensors18,19,20,21,22, owing to their self-ordered honeycomb structure, high aspect ratio of nanopores, and superior mechanical properties23. For applying the nanoporous AAOs to these various applications, they should be freestanding forms with a highly and long-range ordered array of nanopores. In this regard, strategies for obtaining AAOs must consider both formation (anodizing) and separation (detaching) procedures.
In the viewpoint of the AAO formation, mild anodization (hereafter referred as MA) was well established under sulfuric, oxalic, and phosphoric acidic electrolytes23,24,25,26,27. However, MA processes exhibited low-yields of AAO fabrication due to their slow growth rate depending on relatively low intensities of anodic voltages, which would further deteriorate through a two-step MA process for improving nanopores' periodicity28,29. Thus, hard anodization (HA) techniques were proposed as alternatives of MA by applying higher anodic voltages (oxalic/sulfuric acid electrolyte) or using more concentrated electrolyte (phosphoric acid)30,31,32,33,34,35,36,37,38,39,40. HA processes show distinct enhancements of growth rates as well as periodic arrangements, whereas resulting AAOs became more fragile, and the density of nanopores were reduced30. In addition, an expensive cooling system is required for dissipating Joule's heating caused by high current density31. These results restrict the potential applicability of the AAOs via HA processes.
For separating an AAO from the corresponding surface of Al plate, selective chemical etching of the remaining Al substrate was most widely utilized in both the MA and HA processes using toxic chemicals, such as copper chloride35,39,41,42 or mercury chloride16,17,43,44,45,46,47,48,49. However, this method induces disadvantageous side effects, e.g., a longer reaction time proportional to the remaining thickness of the Al, contamination of AAO by heavy metal ions, harmful residues to human body/natural environments, and inefficient usage of valuable resources. Therefore, many attempts have been made for realizing direct detachment of an AAO. Although both cathodic voltage delamination50,51 and anodic voltage pulse detachment7,41,42,52,53,54,55 present a merit that the remaining Al substrate can be reused, the former technique takes almost comparable time with those in chemical etching methods50. Notwithstanding clear reduction of the processing time, harmful and highly reactive chemicals, for examples butanedione and/or perchloric acid, were used as detaching electrolytes in the latter techniques55, where an additional cleaning procedure is needed because of the changing electrolyte between the anodizing and detaching procedure. Especially, the detaching behaviors and quality of the detached AAOs severely influence the thickness. In the case of the AAO with relatively thinner thickness, the detached one might contain cracks and/or apertures.
All the experimental approaches listed above have been applied to a "single-surface" of the Al specimen, excluding surface protecting/engineering purposes, and this feature of the conventional technologies exhibits critical limitations of the AAO fabrication in terms of yield as well as processibility, which also influences the potential applicability of the AAOs56,57.
To satisfy the increasing demands in the AAO-related fields in terms of facile, high yield, and green technological approaches, we previously reported on SMSA and direct detachment through SRBs under sulfuric56 and oxalic57 acid electrolyte, respectively. It is a well-known fact that plural AAOs can be formed on the multiple surfaces of the Al substrate immersed into acidic electrolytes. However, SRBs, a key distinction of our methods, enable the detachment of those AAOs from the corresponding multi-surfaces of the Al substrate in the same acidic electrolyte used for the SMSAs indicating mass-production, simplicity, and green technological characteristics. We would like to point out that SRBs-based detachment is an optimal strategy for plural AAOs fabricated by SMSAs56,57 and even valid for relatively thinner thicknesses of AAOs57 when compared with cathodic delamination (i.e., constant reverse bias) on single-surface51. Finally, a unit sequence consisting of the SMSAs sequentially combined with SRBs-based detachment can be applied repeatedly to the same Al substrate, avoiding complicated procedures and toxic/reactive chemicals, which reinforces the advantages of our strategies and also guarantees the efficient usage of natural resources.
Please be aware of all the related materials safety data sheets (MSDS) before beginning. In spite of the eco-friendly nature of this protocol, a few acids and oxidizers are used in the corresponding procedures. Also, use all the proper personal protective equipment (lab coat, gloves, safety glasses, etc.).
1. Preparation of Solution
Note: After complete sealing of the solution-containing vessel, vigorous magnetic stirring was applied to all the solutions at room temperature in sufficient time.
2. Pretreatment of Al Substrate
3. Massive Fabrication of AAOs under Oxalic Acid Electrolyte
Note: For AAOs with a long-range arrangement of nanopores' periodicity, two-step SMSAs procedure were used, in which periodically textured Al multi-surfaces were obtaining through pre-SMSA, and then, main-SMSA was conducted for fabricating the highly qualified AAOs. Repetitive application of a unit sequence can keep producing plural and almost identical AAOs until the Al substrate remains. "n" denotes number of the applied sequence.
4. Massive Fabrication of AAOs under Sulfuric Acid Electrolyte
NOTE: In this section, clearly different conditions from those in step 3 are pointed out.
Flow chart of nth AAO fabricating sequence mainly consisting of two-step SMSAs, SRBs-detachment, and related chemical etching was presented schematically in Figure 1a. Each inset show a scanning electron microscope (SEM) image of the corresponding surface morphology at each individual procedure and a photograph taken immediately after SRBs-detachment. A schematic illustration after the total 5th repetition of the unit sequence exhibited advantages of SMSA and SRBs-based strategies (Figure 1b). I–t characteristic curves of the pre- and main-SMSAs up to the 5th sequences were compared in Figure 2a and Figure 2b, respectively. A comparison of I–t characteristic curves from each SRBs-detaching procedure are shown in Figure 2c. Photograph and corresponding SEM images of the main-AAOs obtained from front and back surfaces under oxalic and sulfuric acid electrolytes are presented in Figure 3 and Figure 4, respectively.
Figure 1: nth AAOs fabrication procedures (n = 1, 2, 3 …). (a) Schematic flow chart including corresponding SEM images in nth AAOs fabricating sequence: (i) Pristine Al substrate, (ii) Electro polishing, (iii) nth pre-SMSA, (iv) nth pre-AAOs etching, (v) nth main-SMSA, (vi) nth SRBs-detaching, (vii) nth residual alumina etching. A unit sequence was depicted using blue-dashed box. (b) Schematic illustration showing that plural AAOs with equal dimensions of corresponding surfaces were successfully obtained from multi-surfaces of a single Al plate through 5th repetitive applications of the unit sequence. Please click here to view a larger version of this figure.
Figure 2: Peculiar behaviors during two-step SMSAs and SRBs-detachments of AAOs under oxalic acid electrolyte at 15 °C. I-t characteristic curves of (a) pre- and (b) main-SMSAs from 1st to 5th sequences, respectively. (c) I-t characteristic curves of SRBs-detaching procedures from 1st to 5th sequences. Please click here to view a larger version of this figure.
Figure 3: Photograph of the remaining Al substrate and main-AAOs after 5th repetitive applications of the unit sequence under oxalic acid electrolyte. AAOs obtained from front and back surfaces were distinguished by red- and blue-dashed boxes, respectively. Insets: Open-pore and barrier side SEM images of the corresponding 1st to 5th main-AAOs. Please click here to view a larger version of this figure.
Figure 4:Photograph of the remaining Al substrate and main-AAOs after 5th repetitive applications of the unit sequence under sulfuric acid electrolyte. AAOs obtained from front and back surfaces were distinguished by red- and blue-dashed boxes, respectively. Insets: Open-pore and barrier side SEM images of the corresponding 1st to 5th main-AAOs. Please click here to view a larger version of this figure.
Supplementary Information: Please click here to download this file.
In this paper, we successfully demonstrated a facile, high yield, and environmentally clean method to fabricate nanoporous AAOs through SMSA and SRBs-detachment, which could be repeated to the same Al substrate for significantly enhancing mass-producibility as well as usability of limited natural resource. As shown in the flow chart of Figure 1a, our AAO fabricating strategy is based on the conventional two-step anodization, which was modified on multi-surfaces situation. Individual procedures functioned well independent of the other surfaces, because electric fields in the electropolishing and two-step SMSAs procedures were formed in the normal directions on the multi-surfaces, where the electrochemical reaction occurs simultaneously. In this point of view, position of each surface and corresponding AAO will be defined with respect to the counter electrode, as shown in Figure 1b; e.g., "Front" designate a surface confronting the Pt counter electrode, and so on.
Pristine Al substrate showed rougher surfaces due to mechanical polishing, which became much smoother after electropolishing procedure. Each surface of the electropolished Al substrate looked like a mirror in macroscale, however, it was covered with irregularly distributed nanoscale concaves as shown in the inset (ii) of Figure 1a. Therefore, not only every cleaning but also drying treatment were also very important, owing to the fact that solvent traces could significantly affect surface morphologies in procedures after electropolishing. Once deteriorated, surfaces never recovered, and kept the poor morphologies. In this regard, excessive electropolishing treatment would not be good either. If electropolishing time is too long, periodically arranged wavy valleys were formed on the entire Al surfaces, which could increase an adhesive strength between AAOs and Al. A unit sequence depicted by a blue-dashed box shown in Figure 1a consists of nth pre-SMSA, nth pre-AAOs etching, nth main-SMSA, nth SRBs-detachment, and nth residual alumina etching, where n is number of the applied sequence (n = 1, 2, 3, …).
Figure 2 compares the I-t characteristic curves of pre-/main-SMSA and SRBs-detachment from 1st to 5th sequences. In both SMSAs, the current level gradually decreased with increasing applying time. These typical features were only observed in a multi-surfaces situation attributing to the gradual reduction of total anodizing area as well as accumulation of mechanical stresses due to the viscous flow23,58 and volume expansion23,59,60,61,62 during simultaneous formations of plural AAOs56,57. Previous reports on these SMSA and SRBs-detachment proposed the stress-released direct detaching mechanism, which could be further optimized through appropriate SRBs conditions for relatively thinner thickness of AAO (Refer to reference57 for more details).
An intuitive schematic illustration implying massive producibility is successfully realized in Figure 3 and Figure 4 exhibiting results of about total 5th times iterations of the unit sequence under oxalic and sulfuric acid electrolyte, respectively. Each photograph clearly shows that all the AAOs having the exact equal dimensions to those of corresponding front and back surfaces (See the Supplementary Information for the AAOs detached from sides and bottom surfaces). Barrier side SEM images of all sequences indicate that cleavage planes are beneath the barrier oxides in both acidic electrolytes, which are similar results about cathodic delamination of a relatively thicker AAO on mono-surface50,51. As an alternative approach for obtaining AAO with through-hole structures (i.e., without barrier oxide), anodic voltage pulse detachment using another detaching electrolyte7,41,42,52,53,54,55 or two-layer anodization incorporating normal AAO into a sacrificial one fabricated from acidic electrolyte of extremely high concentration (12.0 M)63 might be taken into consideration.
The SMSA and SRBs-based strategy appears to possess an acid-type independent nature, therefore, its various advantages and strengths are worth expanding into phosphoric acid electrolyte and/or HA condition, which will enrich the potentials of nanoporous AAOs toward more versatile applications.
The authors have nothing to disclose.
The authors have nothing to disclose.
Sulfuric Acid >98% | DUKSAN reagent | 5950 | |
Oxalic Acid Anhydrous, 99.5-100.2% | KANTO chemical | 31045-73 | |
Phosphoric Acid, 85% | SAMCHUN chemical | P0463 | |
Perchloric Acid, 60% | SAMCHUN chemical | P0181 | Highly Reactive |
Chromium(VI) Oxide | Sigma Aldrich | 232653 | Strong Oxidizer |
Ethanol, 95% | SAMCHUN chemical | E0219 | |
Absolute Ethanol, 99.9% | SAMCHUN chemical | E1320 | |
Double Jacket Beaker | iNexus | 27-00292-05 | |
Low Temperature Bath Circulator | JEIO TECH | AAH57052K | |
Programmable DC Power Supply | PNCYS | EDP-3001 | |
Aluminum Plate, >99.99% | Goodfellow | ||
Platinum Cylinder | Whatman | 444685 | |
Pure & Ultra Pure Water System (Deionized Water) | Human Science | Pwer II & HIQ II |