Robust derivation of human induced pluripotent stem (hiPS) cells was achieved by using non-integrating Sendai virus (SeV) vector mediated reprogramming of dermal fibroblasts. hiPS cell maintenance and clonal expansion was performed using xeno-free and chemically defined culture conditions with recombinant human laminin 521 (LN-521) matrix and Essential E8 (E8) Medium.
Xeno-free and fully defined conditions are key parameters for robust and reproducible generation of homogenous human induced pluripotent stem (hiPS) cells. Maintenance of hiPS cells on feeder cells or undefined matrices are susceptible to batch variances, pathogenic contamination and risk of immunogenicity. Utilizing the defined recombinant human laminin 521 (LN-521) matrix in combination with xeno-free and defined media formulations reduces variability and allows for the consistent generation of hiPS cells. The Sendai virus (SeV) vector is a non-integrating RNA-based system, thus circumventing concerns associated with the potential disruptive effect on genome integrity integrating vectors can have. Furthermore, these vectors have demonstrated relatively high efficiency in the reprogramming of dermal fibroblasts. In addition, enzymatic single cell passaging of cells facilitates homogeneous maintenance of hiPS cells without substantial prior experience of stem cell culture. Here we describe a protocol that has been extensively tested and developed with a focus on reproducibility and ease of use, providing a robust and practical way to generate defined and xeno-free human hiPS cells from fibroblasts.
Since the first derivation of hiPS cell lines by Takahashi et al.1,2, hiPS cells have provided a useful tool for disease modeling, drug discovery and as source material for generating cell therapies in regenerative medicine3. hiPS cell culture has long been dependent on co-culture with fibroblast feeder cells4,5 or on Matrigel6 and with media formulations containing fetal bovine serum (FBS). Batch-to-batch variances are a common consequence of the undefined nature of these culture conditions, resulting in unpredictable variations, which is a major contributor to the unreliability of these protocols7. The development of defined medium such as Essential 8 (E8)8 and defined cell culture matrices for instance LN-5219, allows for the establishment of highly reproducible protocols and aid in the robust generation and maintenance of homogenous hiPS cells7,8,9,10.
Development of integration free reprogramming techniques have been a leap forward. Originally, reprogramming depended on retroviral vectors which randomly integrated into the genome with disruptive effects on genomic integrity11. Advances in reprogramming methodologies includes the development of RNA based vectors. RNA vectors have an advantage over the DNA based reprogramming method as unintended integration through genomic recombination is not possible12. SeV vectors provide high and transient expression of exogenous factors through single-stranded RNA without a DNA-phase11. The reprogramming vectors delivered by the SeV are diluted throughout cell expansion and eventually shed from culture providing a foot-print free way of reprogramming. Thereafter, maintenance of pluripotency is dependent on endogenous expression of the pluripotency genes2.
As pioneering hiPS cell based therapies are beginning to move into clinical trials, the demands for standardized batches, reproducibility, and safety are essential issues to address13. Therefore, products of animal origin should be avoided. For instance, the use of xenogeneic products has been associated with risk of nonhuman pathogen contamination. Also, cells cultured in the presence of animal derived culture components have been shown to incorporate nonhuman siliac acids into cell membranes which threatens to render derived cells immunogenic14. Hence, the need to eliminate xenogeneic products is necessary to any future clinical pursuits. This protocol applies xeno-free and defined culture in the maintenance of hiPS cells moving cells closer to clinical compliance.
This protocol describes a consistent, highly reproducible and easy-to-use method that generates standardized hiPS cells from fibroblasts. It also offers a user-friendly culture system for the maintenance of established hiPS cells. This protocol has been used to derive more than 300 hiPS cell lines in the Swedish national human iPS Core facility at Karolinska Institutet of which some lines have previously been described15,16.
The collection of patient material and derivation of hiPS cells is approved by the Ethics Review Board, Stockholm, March 28, 2012, Registration number: 2012/208-31/3. Cell culture steps should be performed in biosafety cabinets unless otherwise mentioned. Always practice sterile handling techniques when working with cells. Allow media, plates and reagents to reach room temperature before starting. Incubate cells at 37 ᵒC, 5% CO2 in high humidity.
1. Isolation of Human Fibroblasts from Dermal Biopsy
2. SeV Vector Reprogramming of Fibroblasts
3. Picking of Colonies and Expansion of hiPS Cells
NOTE: The following steps are done outside of the biosafety cabinet under a stereo microscope. The use of hairnet and procedure masks are recommended. Work carefully not to contaminate the cell culture.
From biopsy to hiPS cells
The entire process from biopsy to established hiPS cells, clear of reprogramming vector and ready for characterization, takes approximately 16 weeks (Figure 1). A more detailed timeline is specified in Figure 2A. Approximately 4 weeks is needed to establish and expand fibroblast cultures. The first hiPS cell colonies started to emerge about three-weeks post Sendai vector transduction. Colonies were picked mechanically for the first passage and then passaged enzymatically as single cells.
Establishment of human fibroblast cultures
When the human fibroblast cultures had grown to confluency and displayed accepted morphology, they were first expanded and frozen for two passages before being plated for transduction (Figure 2B).
Reprogramming of human fibroblasts using SeV vectors
Increased levels of cell death were found in the days following SeV transduction and slight changes to fibroblast morphology were observed. Emergence of the first hiPS colonies was detected from day 12 post-transduction (Figure 2A, 2C). Colonies ready to be picked were expected about three to 4-weeks post-transduction (Figure 2A, 2D). Seeding cells in the amounts specified in this protocol resulted in an abundance of colonies emerging (<20). Selective picking of colonies displaying the favorable morphology is recommended. Colony features preferred included flattened compact cells mass, growth as homogeneous monolayers, distinguishable individual cells with sharp edge towards surrounding fibroblasts (Figure 2D). The hiPS cell colonies were cut in a grid-like pattern using a scalpel and mechanically passaged (Figure 2E). Picked hiPS clones were left for 48 hours to adhere to the plate without medium change. hiPS cell clones were highly homogeneous however few fibroblasts originating from the reprogramming plate was tolerated during the first two passages (Figure 2F). Picking of colonies with fussy borders and large uncompact heterogeneous cell mass should be avoided (Figure 2G). Obtained hiPS cell lines grew as dense monolayers, with large nucleus-to-cytoplasm ratio and had defined luminescent borders. In contrast, adhered non-homogenous colonies that did not fulfill these criteria were discarded (Figure 2H) to avoid cultures of mixed cell populations.
Validation of hiPS cell clones
Pluripotency characterization of derived cells was performed after the SeV vector was lost and the maintenance of the pluripotent state was driven by the expression of endogenous factors. Before proceeding with hiPS cell validation, ensure the SeV vector expression has been lost. Following this protocol, SeV vector RNA is no longer detectable by passage 12 according to our experience, thus a suitable starting point of characterization (Figure 3A). Immunocytochemistry staining for pluripotency markers OCT4, SSEA4 and NANOG should yield a homogenously positive result (Figure 3B). Cell cultures containing partially reprogrammed cells that did not express pluripotency factors were discarded (Figure 3C). mRNA expression of endogenous pluripotency genes is shown by real time-PCR (RT-PCR) in Figure 3D.
Pluripotent stem cells should be readily able to differentiate into the three germ layers. hiPS cells differentiation potential was assessed by formation of Embryoid bodies (EB)18. Free floating EBs generated from hiPS cells are shown in Figure 3E and mRNA expression of germ layer specific markers after 21 days of EB differentiation is represented in Figure 3F.
Figure 1: Flow Chart from Skin Biopsy to hiPS Cells.
Overview of the key steps in the protocol. The illustration includes biopsy collection, isolation of fibroblasts, SeV transduction, picking of colonies and the clonal expansion of hiPS cells. Please click here to view a larger version of this figure.
Figure 2: Critical Steps in the Generation of hiPS Cells.
(A) Timeline highlighting important time points in the protocol including fibroblast plating, SeV transduction, medium changes and coatings. Passage 12 of hiPS cells is highlighted as the start of characterization experiments. (B) Bright field image of confluent fibroblasts in culture with typical morphology. (C) Emergence of hiPS cell colonies from transduced fibroblasts. (D) Ready to pick colony displaying preferential features, flattened compact cell mass, distinguishable individual cells with sharp edges towards surrounding fibroblasts (Passage 0). (E) hiPS cell colonies are cut in a grid-like pattern and mechanically passaged. (F) Adhered colony after a few days of growth. The adhered hiPS cells are surrounded by an unusually high number of fibroblasts originating from the reprogramming plate. The fibroblasts can be scraped of the plate and will most likely disappear with subsequent single cells passages (Passage 1). (G) Colonies displaying morphology not reminiscent of fully reprogrammed cells; fussy borders, large uncompact heterogeneous cell mass. (H) Bright field image exemplifying an early passage homogeneous fully reprogrammed hiPS cell line compared to a highly heterogeneous cell line. Scale bars indicate 100 µm. Please click here to view a larger version of this figure.
Figure 3: Characterization of hiPS Cells.
(A) RT-PCR of SeV vector specific markers. hiPS cells at passage 3 are used as positive control for the reprogramming vectorsl. At passage 12 cells are negative for expression of virus specific markers Sendai specific backbone (SeV B), Sendai specific KLF4 (KLF4 SeV), Sendai specific cMYC (cMYC SeV), PCR control (GAPDH) and no template (-). (B) Representative example of fully reprogrammed homogeneous hiPS cell line at passage 12. Bright field image of hiPS cells reveal cells grow in tight monolayers with sharp luminescing edges and with large nuclei and small cytoplasm. Immunocytochemistry staining of pluripotency markers OCT4, NANOG, SSEA4, and nuclear staining 4',6-diamidino-2-phenylindole (DAPI) demonstrating homogeneous positive expression. (C) Cell line exhibiting heterogeneous expression for pluripotency marker NANOG. The culture contains partially reprogrammed cells and should be discarded. (D) RT-PCR of mRNA expression of pluripotency markers NANOG, OCT4, PCR control (GAPDH) and no template (-) indicating the expression of pluripotency markers. (E) Free floating embryoid bodies generated from hiPS cells. (F) RT-PCR after 21 days of embryoid body differentiation show that derived hiPS cells are capable of differentiation to the three germ layers. Endodermal markers AFP and GATA4, mesodermal markers RUNX and HAND1, ectodermal markers NCAM and NESTIN, PCR control (GAPDH) and no template (-). Scale bars indicate 100 µm. Please click here to view a larger version of this figure.
The expected result of this protocol is the successful generation of several clonally derived hiPS cell lines. Importantly, the method for the maintenance of and expansion of established hiPS cells here described is reliable and can be performed with little prior experience of stem cell culture. Enzymatic single cell passaging with ROCKi together with the LN-521 matrix is known to maintain cells as karyotypically normal, pluripotent and readily able to differentiate while avoiding induced heterogeneity that colony based passaging can stimulate10,19,20. hiPS cells cultured on LN-521 can be passaged as single cells without the addition of ROCKi10, the addition of ROCKi does however make the protocol easier for less experienced handlers and reduces the time required for hiPS cell derivation.
Reprogramming efficiency is generally not an issue with this protocol; SeV vectors have relatively high reprogramming efficiency > 1% for fibroblasts11. The emergence of an abundance of colonies (<20) is expected. It is recommended to pick three times the number of colonies needed. It has been observed that a portion of picked clones fail to adhere after picking. Extra colonies could also be needed to compensate for partially reprogrammed colonies. Partially reprogrammed colonies are in some cases capable to adhere and grow supported by exogenous expression of pluripotency genes by the SeV vectors. As the SeV vectors are diluted, these cells will cease proliferating and dissociate, usually apparent around passage 6-8. Heterogeneity of the culture is also a sign of partial reprogramming and heterogeneous lines should be discarded (Figure 2H).
The optimal choice of reprogramming vector and culture conditions is dependent on the purpose of the cells generated. However, to avoid batch-to-batch variances influencing results, defined conditions are recommended. The choice of a non-integrating vector system is suggested to conserve genomic integrity of reprogrammed cells. SeV vectors were chosen in this protocol due to the robustness, relatively high efficiency and low hands on time required. The SeV vectors are diluted during cell divisions and are not detectable around passage 12, thus ensuring that generated data is not influenced by exogenous expression. Because of the meticulous demands put on cells intended for clinical purposes, SeV reprogramming can be a barrier to clinical translation since proving the complete shedding of all vector material is difficult. mRNA mediated reprogramming can be advantageous if deriving cells with intended use in cell therapies12. These methods are however far more labor intensive and more complicated to use21. The method here described for fibroblast culture is also unsuitable for clinical applications. As both FBS and gelatin are xenogeneic and undefined, consider switching these to defined xeno-free products22.
Sterile handling techniques and regular mycoplasma infection testing is recommended while working with any form of cell culture. Human skin contains many microorganisms that could thrive in the conditions cells are cultured in if not properly handled. It is therefore recommended to be extra vigilant in the handling of skin biopsies and during the first days of culture following biopsy processing. The establishment of fibroblast culture from skin biopsies is, indeed, a time-consuming process. After processing the skin biopsy, there will initially be weak signs of fibroblast cells adhering, thus wait at least one week to find a few fibroblast cells displaying expected morphology in the culture. The time needed for the establishment of fibroblasts in vitro cultures from biopsies is dependent on a variety of factors including size of biopsy, age of donor and how the biopsy has been handled since it was taken. It is preferred to reprogram early passage fibroblasts for optimal reprogramming efficiency23.
In summary, we here describe an established robust and easy-to-use method for generation of highly homogeneous hiPS cells.
The authors have nothing to disclose.
This work was supported by SSF (B13-0074) and VINNOVA (2016-04134) funding agents.
Dispase | Life Technologies | 171105-041 | Biopsy digestion |
Collagenase | Sigma | C0130 | Biopsy digestion |
Gelatin | Sigma | G1393 | Fibroblast matrix |
IMDM | Life Technologies | 21980002-032 | Fibroblast medium |
FBS | Invitrogen | 10270106 | Fibroblast medium |
PenicillinStreptomycin | Life Technologies | 15070-063 | Antibiotic |
Essential 8 media | ThermFisher Scientific | A1517001 | iPS cell culture media |
LN-521 | Biolamina | LN521-03 | iPS cell culture matrix |
TrypLE select 1X | ThermoFisher Scientific | 12563011 | Dissociation reagent |
Rho-kinase inhibitor Y27632 | Millipore | SCM075 | Rho-kinase inhibitor (ROCKi) |
CytoTune – iPS 2.0 reprogramming kit | Life Technologies | A1377801 | Sendai virus reprogramming vector |
35 mm tissue culture dish | Sarstedt | 83.3900.300 | Cell culture |
60 mm tissue culture dishes | Sarstedt | 83.3901.300 | Cell culture |
24 well tissue culture plates | Sarstedt | 83.3922.300 | Cell culture |
T25 tissue culture flasks | VWR | 734-2311 | Cell culture |
15 ml tubes | Corning | 430791 | Centrifuge tubes |
1.5 ml tube | Eppendorf | 0030123.301 | 1.5 ml tube |
CoolCell cell LX | Biocision | BCS-405 | Freezing container |
DMSO | Sigma | D2650-100ml | Fibroblast freezing |
Cryovials 1.8 ml | VWR | 479-6847 | Cryovials |
PSC Cryopreservation Kit | Gibco | A2644601 | PSC CryomediumRevitaCell supplement |
Trypsin-EDTA (0.05%) | ThermoFisherScientific | 25300054 | Fibroblast dissociation enzyme |
DMEM/F12 | Life Technologies | 31331-028 | Digestive enzymes dilutant |
DPBS | Life Technologies | 14190-094 | PBS |
HBSS | ThermoFIsher Scientific | 14025-050 | Biopsy preparation |
Haemocytometer | Sigma | BRAND, 718920 | Cell counting |