We present a method for quantifying growth phenotypes of individual yeast cells as they grow into colonies on solid media using time-lapse microscopy termed, One-cell Doubling Evaluation of Living Arrays of Yeast (ODELAY). Population heterogeneity of genetically identical cells growing into colonies can be directly observed and quantified.
Growth phenotypes of microorganisms are a strong indicator of their underlying genetic fitness and can be segregated into 3 growth regimes: lag-phase, log-phase, and stationary-phase. Each growth phase can reveal different aspects of fitness that are related to various environmental and genetic conditions. High-resolution and quantitative measurements of all 3 phases of growth are generally difficult to obtain. Here we present a detailed method to characterize all 3 growth phases on solid media using an assay called One-cell Doubling Evaluation of Living Arrays of Yeast (ODELAY). ODELAY quantifies growth phenotypes of individual cells growing into colonies on solid media using time-lapse microscopy. This method can directly observe population heterogeneity with each growth parameter in genetically identical cells growing into colonies. This population heterogeneity offers a unique perspective for understanding genetic and epigenetic regulation, and responses to genetic and environmental perturbations. While the ODELAY method is demonstrated using yeast, it can be utilized on any colony forming microorganism that is visible by bright field microscopy.
Growth phenotypes of microorganisms are a strong indicator of their underlying genetic fitness to a given environmental condition. Growth is classically segregated into 3 different growth regimes: lag-phase, log-phase, and stationary-phase growth1. Each growth phase can reveal different aspects of fitness that are dependent on various environmental and genetic conditions. For example, lag time, or the length of time an organism spends in lag-phase before the start of exponential growth, can be indicative of an organism's ability to respond to altered environmental conditions2. Doubling time during log-phase growth, the most common metric of cellular fitness, reveals the overall efficiency of an organism's ability to divide by metabolizing and utilizing environmental materials for replication. Stationary phase, where growth after log-phase is rapidly reduced, is another indicator of fitness, which is regularly used as a growth endpoint in spot-based yeast growth assays.
Several yeast growth assays are currently available and considered standard methods for evaluating growth phenotypes in yeast3,4,5. These assays are primarily based on methods for growing yeast either on solid or in liquid media. On solid media, colony pinning assays transfer a small number of cells onto solid agar with a pin, and yeast cells are allowed to grow for a defined period of time. Colonies are then imaged and their sizes are compared at a terminal endpoint6. These colony pinning assays have proven robust and scalable to generate genome-wide screens. More recently, periodic imaging using flat-bed scanners and Single Lens Reflex (SLR) cameras have been incorporated into these assays to record colony growth over time7,8,9. However, the resolution of these devices prevents them from detecting single cells and thus, these colony pinning assays do not directly observe lag time and cannot observe variation between the individual cells that grow into colonies.
Liquid-based growth assays have also been employed to perform genome-wide screens3. Coupling a liquid growth assay with time-lapse microscopy revealed population heterogeneity in the doubling time of genetically identical individual cells, which offers an important perspective for understanding genetic regulation and environmental adaptation. However, this assay does not measure other aspects of growth such as lag time and carrying capacity10. Here we present a method to characterize all three growth phases of colony forming microorganisms on solid media using an assay we term ODELAY11. ODELAY consists of utilizing high throughput time-lapse microscopy to record images of single cells growing into colonies on solid media. This population of individual cells growing into colonies reveals the underlying population heterogeneity, which is not detected by other less sensitive measurements such as terminal endpoint scoring. We demonstrate the method on yeast, but ODELAY may be applied to any organism that shows contrast in bright field microscopy.
1. Preparation of Agarose Gel Stock
2. Preparing ODELAY Agarose Media
3. ODELAY Culture Preparation
4. Spotting on Agar using an Automated Liquid Spotting Robot
5. Running ODELAY on Microscope
6. Processing ODELAY Data
Example images of yeast growing in time-lapse microscopy are shown in Figure 3B. After processing the time-lapse images, a representative data set comparing yeast strains BY4741 & BY4742 is shown in Figure 4. In this example dataset, there is very little variation in doubling time between different positions on the plate. If the agarose medium is prepared poorly, then an obvious deviation in both doubling time and lag time would be apparent in the spot positions that coincide with the deformed region of the agarose gel. While doubling times appear to be relatively uniform, this example shows variations in lag time measurements. A more consistent data set is shown in Figure 6. In this dataset both lag time and doubling time are uniform.
Figure 1: Agar Mold Assembly.
The components of the agar mold are shown in (A). Assemble the base as shown in (B) and then clamp the base with small binder clips. Place the longer upright pieces in the cavity of the base (C) and then camp the slides to the mold as shown in (D). A side view showing the angle of the mold and orientation of the mold kerf needed for consistent separation of the agar from the glass slide (E). Note the position of the thumb and forefingers, as well as the straight line of the agar separating from the slide (F) and note the horizontal arrow. The separation line should move evenly away in the direction of the vertical arrows. Please click here to view a larger version of this figure.
Figure 2: Sonication and Spotting Method.
Sonicate the plate in ice water and using a centrifuge bucket holder to help support the plate (A). Lay the plates from steps 3.8.1 out for the spotting onto the agarose plate (B). Also, arrange the tips so that the left most tip box has one tip at position C10 and then four other tips with their ends cut off so they do not crash the plate holder (C). Place the remaining tips in four boxes so that the inner 24 tips positions are occupied (D). Please click here to view a larger version of this figure.
Figure 3: ODELAY Graphical User Interface.
A screen shot of the Graphical User Interface for "ODELAY_Microscopecontrol.m" (A). This interface allows monitoring of the camera and for adjusting the microscope illumination settings for epifluorescent and bright-field modes. Red arrows point to the Focus and Transmitted buttons that activate the camera to acquire images quickly and open the transmitted light shutter respectively. Blue arrows are used for moving the stage for the origin and then setting the origin with the "Go Origin" button and "Set" button. Green arrows point to "Reset" and "ODELAY!!!" buttons that reset ODELAY image modes to the current conditions and initiates ODELAY image collection. Time-lapse images of yeast growing on solid medium at 0, 3, 6, and 9 h after spotting (B). A screen shot of the Graphical User Interface for "ODELAY_IPT.m" or the ODELAY Image Processing Tool (C). Please click here to view a larger version of this figure.
Figure 4: Example ODELAY Output.
This dataset compares strains BY4741 and BY4742 on YPD media. This figure is an example of a well-prepared agarose slide; however, autofocus settings are not optimal. The data presented in each column, from left to right, are: the carrying capacity in Log2 of the colony area; doubling time, given in min; and lag time, given in min. In this example, doubling times of all spots on the agar slide line up well with a small amount of increased doubling time towards the column. However, lag times vary considerably in this dataset. Please click here to view a larger version of this figure.
Figure 5: Growth Curve Examples.
This example demonstrates how poor initial focus can cause the estimated lag time (tlag) to increase (A), while the adjacent position shows a shorter lag time (B). td is the doubling time in min, and tlag is the lag time in min. Please click here to view a larger version of this figure.
Figure 6: Example of Well Executed Test Experiment.
An example of the BY4742 strain tested after replacing a tungsten halogen bulb with a diode illuminator and ensuring the autofocus is set correctly. All doubling times appear to overlap well and the lag times appear to be consistent. Please click here to view a larger version of this figure.
The ODELAY assay has several critical points for ensuring reproducible and reliable phenotypic measurements. The first critical point is consistent preparation of the yeast cultures. Care must be taken to harvest the yeast cells from logarithmic growth. If the cultures have saturated, then their population heterogeneity will be increased which may obfuscate heterogeneity caused by genetic or environmental (e.g., carbon source) factors11. The second critical point is consistent preparation of the media. In general, a large volume of 10X stock media solution should be generated and then used over time to minimize batch effects. Formulating media by weight, whenever possible, helps improve the consistency of the medium over time by ensuring the density of agar and the overall water content of the agarose can be closely monitored. The third critical point involves minimizing or eliminating any mechanical deformation of the agarose media. Mechanical deformation of the media will most commonly occur during separation of the agarose from the glass slides. As with many laboratory techniques, practice is required to master this step.
Variation in lag time as depicted in Figure 4, is often related to one of the three factors: mechanical deformation of the agarose medium, variation in the molded agar thickness, or an unstable light source. If the agarose medium varies in Z-height across the spotted array, the height variation may overwhelm the range of the autofocus routine, causing the initial images to be slightly out of focus. For this reason, check the focus height at multiple spots in the center and along the edges of the spotted array to ensure the autofocus routine has sufficient Z-range to find focus. If needed, use the Autofocus panel to increase the focus range and increase the number of focusing steps.
A third possible condition that may lead to poor focus is an unstable or flickering light source, which can disrupt the calculated focus score for a specific Z-height. Tungsten halogen bulbs tend to flicker well before the bulbs burn out. The effect of poor focus is observed in one example where the growth curves dip between the first and second time points (Figure 5A), while the adjacent spot does not have the same dip (Figure 5B). In this case, the poor focus condition was alleviated by replacing the tungsten halogen light source.
In practice, the authors have found that to reduce the flicker of 100W tungsten halogen bulbs, the bulbs need to be replaced every 500 h or roughly every 2 months when the microscopes are under heavy use. To avoid poor focus issues from a flickering bulb, replace the tungsten halogen light source often or replace the halogen bulb with a diode light source. An example of a dataset that shows low variation in doubling times as well as more uniform lag times is shown in Figure 6. This dataset was taken with a diode illuminator which provides a more stable illumination over time while performing the autofocus.
While many of the points mentioned here for optimizing media preparation may appear to be obvious, in the literature most large scale screens do not replicate well with each other8,11. Therefore, we have carefully described the preparation of cultures and agarose media so that more reproducible phenotypic screens may be generated.
The ODELAY assay is currently limited in throughput when compared to pinning based assays such as synthetic genetic arrays or the Scan-O-Matic assay. While these methods increase the number of strains that are measured, they lack an ability to resolve individual cells and thus cannot measure population heterogeneity that we observe within clonal yeast strains. The origin of this population heterogeneity is not currently understood, but the merging of technology and computation as demonstrated here offers an opportunity for objectively addressing the underlying cellular mechanisms12.
The authors wish to note that ODELAY is currently only optimized for a specific microscope brand and body type. Modifying ODELAY for other microscope systems is straight forward but will require knowledge of the open source API13. However, both the API as well as the ODELAY scripts are written to be easily adapted to different systems and experimental assays.
While ODELAY was originally developed for yeast, we have been able to utilize it without modification to observe growth of Mycobacterium smegmatis. Observation of the other colony forming microorganisms is possible with alterations to the source code provided11. In general, ODELAY is a powerful and flexible tool for comparing microorganisms grown under different environmental conditions and genetic perturbations.
The authors have nothing to disclose.
The authors acknowledge support for this work by grants U54 RR022220 and P50 GM076547 to J.D.A from the U.S. National Institutes of Health. F.D.M. is a postdoctoral fellow with the Canadian Institutes for Health Research. We also thank the Luxembourg Centre for Systems Biomedicine and the University of Luxembourg for support.
Agarose UltraPure | ThermoFisher | 16500500 | Gel Temp 36C, Gel Strength (1%) 1.2g/sq cm |
Yeast Extract Peptone (YEP) | Fisher Scientific | BP1422-2 | |
Complete Suplement Mixture (CSM) | Fisher Scientific | MP114560222 | |
Polyethylene Glycol 3350 (av. mol. wt. 3000-3700) | SigmaAldrich | P2906 | |
Yeast Strain BY4741 | ThermoFisher | 95400.BY4741 | |
Yeast Strain BY4742 | ThermoFisher | 95400.BY4742 | |
50mL Falcon tubes | Corning | 430291 | 1 case |
15mL Falcon tubes | Corning | 352096 | |
2 x 3 inch 1.0mm thick slides 1/2 gross | VWR | 48382-179 | |
96 well plate flat bottom | Corning | 353072 | |
Hydra liquid handleing robot | Thermo | 1096-DT-100 | |
Hamilton Microlab Star Liquid Handleing Robot | Hamilton | ||
hydra 100 mL tips Extended Length DARTS | Thermo | 5527 | |
Synergy H4 Plate Reader | Biotek | H4MLFAD | |
Leica DMI6000 B Microscope | Leica | ||
Leica 10X/0.3NA objective | Leica | 11506289 | |
Hamamatsu ORCA Flash 4.0 Camera | Hamamatsu | C11440-22CU | |
MATLAB with image processing tool box | Mathworks | ||
MicroManager | Open Imaging | https://micro-manager.org/ | |
ODELAY Microscope Control (MATLAB scripts and GUI) | www.aitchisonlab.comODELAY for Matlab scripts and software | ||
ODELAY Microscope Chamber | www.aitchisonlab.comODELAY for Mechanincal Drawings | ||
ODELAY Agar Molds | www.aitchisonlab.comODELAY for mold drawings |