Summary

锗通过原子层沉积钙钛矿型钛酸锶的外延生长

Published: July 26, 2016
doi:

Summary

这个工作详细直接结晶的SrTiO 3的锗基板通过原子层沉积的生长和表征的程序。该过程示出了一个全化学生长方法来单片集成氧化物到半导体金属氧化物半导体器件的能力。

Abstract

Atomic layer deposition (ALD) is a commercially utilized deposition method for electronic materials. ALD growth of thin films offers thickness control and conformality by taking advantage of self-limiting reactions between vapor-phase precursors and the growing film. Perovskite oxides present potential for next-generation electronic materials, but to-date have mostly been deposited by physical methods. This work outlines a method for depositing SrTiO3 (STO) on germanium using ALD. Germanium has higher carrier mobilities than silicon and therefore offers an alternative semiconductor material with faster device operation. This method takes advantage of the instability of germanium’s native oxide by using thermal deoxidation to clean and reconstruct the Ge (001) surface to the 2×1 structure. 2-nm thick, amorphous STO is then deposited by ALD. The STO film is annealed under ultra-high vacuum and crystallizes on the reconstructed Ge surface. Reflection high-energy electron diffraction (RHEED) is used during this annealing step to monitor the STO crystallization. The thin, crystalline layer of STO acts as a template for subsequent growth of STO that is crystalline as-grown, as confirmed by RHEED. In situ X-ray photoelectron spectroscopy is used to verify film stoichiometry before and after the annealing step, as well as after subsequent STO growth. This procedure provides framework for additional perovskite oxides to be deposited on semiconductors via chemical methods in addition to the integration of more sophisticated heterostructures already achievable by physical methods.

Introduction

钙钛矿材料是由于其高度对称的立方或仿立方体的结构和性质的无数越来越具有吸引力。这些材料中,与通式ABO 3,由具有与六个氧原子配位12个氧原子和硼原子配位的原子。由于其结构简单,但广泛的潜在元素,钙钛矿材料为异质器件的理想候选。外延氧化物异质夸铁,1 3防/铁电,4多铁,5 8超导,7 12和磁阻功能13,14许多可取的电子性质是界面,因此依赖于材料间干净的,突然的转变。钙钛矿家族成员之间共享的几乎相同的结构,晶格常数让优秀的升attice匹配,因此,高品质的接口。容易晶格匹配彼此以及一些半导体,钙钛矿型氧化物现在正在转向下一代金属氧化物半导体电子元件。

与硅晶体氧化物,先用钙钛矿型钛酸锶证实的单片集成,的SrTiO 3(STO),由麦基和他的同事,15是在实现具有钙钛矿半导体掺入的电子设备的一个巨大的步骤。分子束外延(MBE)为上,因为层与层之间的生长的硅氧化物的外延生长的主要技术,以及需要控制无定形的,界面 SiO 2形成的可调氧分压16日 19典型MBE生长在Si STO的(001)是由SiO 2构成锶辅助脱氧实现。下的超高真空(UHV)条件下,的SrO是易失性和分JECT热蒸发。自的SrO是热力学优于锶金属和SiO 2,锶的沉积从SiO 2层拾荒氧和所得的SrO从表面蒸发。在此过程中在硅表面经历2×1重构,形成二聚硅原子的行的表面上。交通便利,½重建表面上的锶原子的单层(ML)的覆盖填补这些二聚体行而产生的空白。20 1/2 ML覆盖范围规定,与氧气压力的严格控制,可以防止或控制界面的SiO 2的保护层随后的氧化物生长期间形成的21 23在STO的情况下(与类似的晶格匹配的钙钛矿),将所得的晶格旋转45°的面内,使得(001)STO‖(001) 的Si(100)STO‖ (110) 的Si,从而在Si之间的注册表(3.84埃丝丝的距离)和STO(A = 3.905埃)与申通快递只有轻微的压缩应变。该注册表是必要的高品质的接口和它们具有所需的性质。

硅成为工业显著由于其界面氧化的高品质,但SiO 2的使用正在逐渐被淘汰了能够在更小的特征尺寸同等性能的材料。 SiO 2的经验高漏电流时的超薄和这减少设备的性能。对于更小的特征尺寸的需求可以通过具有高介电常数,K钙钛矿氧化物膜,提供相当于SiO 2的性能,并且由系数k /3.9比SiO 2的物理厚来满足。此外,另外的半导体,如锗,提供更快的设备操作的潜力,由于比硅更高的电子和空穴迁移率。24,25锗也有一个INTERFacial氧化物,GeO 2的,但在对比 SiO 2,它是不稳定的,并受到热脱氧。因此,2×1重构是通过超高真空下简单的热退火实现的,和一个保护锶层是不必要的,以防止钙钛矿沉积期间界面氧化物的生长。26

尽管明显缓解通过MBE提供生长,原子层沉积(ALD)提供用于商业化生产的氧化物材料的比MBE更具扩展性和成本有效的方法。27,28 ALD采用剂量气态前体的对是自基板限制在与衬底表面反应。因此,在理想的ALD工艺,最多一个原子层沉积为任何给定的前体给药周期和相同的前体的持续给药不会沉积附加的材料在表面上。反应性官能恢复与一个共反应物,通常是氧化或还原的前体( ,水或氨)。以前的工作已经证明各种钙钛矿薄膜,如锐钛矿型 TiO 2,钛酸锶3 BaTiO 3,和LaAlO 3的ALD生长,对已缓冲通过MBE生长四晶胞厚的STO的Si(001)。29 34在晶体氧化物纯粹MBE生长,½锶清洁的Si(001)单层覆盖足以原产于技术(〜10 -7托)的压力下,提供针对二氧化硅形成的障碍。然而,在〜1乇的典型的ALD操作压力,以前的工作已经表明,STO四个单元电池是必需的,以避免氧化Si表面29

这里详细介绍的过程利用的GeO 2的不稳定性,实现对通过ALD锗STO的单片集成,而不需要一个MBE生长缓冲层。26。此外,葛优葛原子间距离(3.992 a)在(100)表面允许为与硅(001)观察到的STO类似的外延注册表。虽然这里介绍的程序是特定于戈STO,轻微的修改可以允许多种锗钙钛矿薄膜的单片集成。事实上,结晶SrHfO 3钛酸钡的电影直接ALD增长已经报道了葛优,35,36其他可能性包括潜在的栅氧化层,SrZr 点¯x1-X O 3。37最后,建立在ALD钙钛矿增长以前的研究上的Si的四单元电池的STO膜(001)29 34表明可能的STO / Si的平台上生长的任何膜可以在锗一ALD生长的STO缓冲膜,如LaAlO 3和LaCoO生长3,32,38可用于氧化异质结构和钙钛矿型氧化物之间显着的相似性的众多建议这个程序可以利用ŤØ以前的研究与这样一个工业可行的技术困难或不可能的增长组合。

图1描绘了真空系统,该系统包括ALD,MBE,并通过一个12英尺传输线相连的分析腔室的示意图。可将样本各腔室之间真空转移。输送线的基线压力是由三个离子泵保持在约1.0×10 -9乇。商业角度分辨紫外线和X射线光电子能谱(XPS)系统被保持与离子泵,使得在分析腔室中的压力保持在约1.0×10 -9乇。

所述ALD反应器是矩形定制不锈钢室中460 cm 3的体积和长度为20厘米。所述ALD反应器的示意图示于图2,反应器是一个热壁,连续横流型反应器中。放置在反应器样品具有的所述基板的顶部表面和所述室的天花板和基板的底面和腔室底板在1.9厘米1.7厘米的间隙。加热胶带,搭载专用的电源,从入口室缠到超出排气口约2厘米,提供了反应器壁的温度控制。温度控制器根据由位于加热胶带和外部反应器壁之间的热耦合截取的温度测量来调整输入功率到加热胶带。然后将反应器完全由自耦变压器提供恒定的功率的三个附加加热磁带,和玻璃纤维羊毛用铝箔被覆的最终层提供绝缘,以促进均匀的加热包裹。自耦变压器的功率输出进行调节,使得在反应器的怠速温度(当专用电源关闭)为约175℃。该反应器是PASsively经由环境空气冷却。基板温度是使用线性拟合等式(1),其中T S(℃)是衬底和T C(℃)的温度是反应器壁的温度计算,得到通过直接测量装配有衬底一个热电偶。温度曲线沿着腔室的流动方向上存在由于连接在反应器的输送管线的冷闸阀;垂直于流动方向上的温度分布是忽略的。的温度分布导致在样品的前缘更丰富的锶沉积,而是沿着样品的组成变化是根据XPS小(小于样品的前缘和后缘之间有5%的差异)。31的排气反应器被连接到一个涡轮分子泵和机械泵。在ALD工艺中,反应器是由机械泵泵送保持在约1乇的压力。否则,reactoř压力由涡轮分子泵保持在低于2.0×10 -6乇。

(1)T S = 0.977T C + 3.4

在MBE室保持在约2.0×10 -9乇或低于一个低温泵的基线压力。在MBE室的各种物质的分压是由残余气体分析仪监测。的H 2的背景压力为大约1.0×10 -9乇,而那些 O 2,CO,N 2,CO 2和H 2 O,小于1.0×10 -10乇。此外,MBE室还配备有六个喷射室,一个四口袋电子束蒸发器,一个原子氮等离子体源和具有高精度的压电泄漏阀的原子氧等离子体源,以及一反射高能电子衍射(RHEED )系统,用于在原位生长和结晶观察实时性。山姆PLE操纵器允许基板使用耐氧碳化硅加热器被加热到​​1000℃。

Protocol

1.准备锶,钛前兆ALD实验加载清洁,干燥湿润和新的前体到一个手套箱的前室。按照手套箱的装载程序,以确保空气和水分的正确清洗。转移材料到主腔室中。 注:本集团还采用了房子建湿润( 见图3)购得的部件。饱和器组件的细节可以在特定的试剂和仪器的清单中找到。 存储锶前体(锶双(triisopropylcyclopentadienyl)[锶(ⅰPR 3</sub…

Representative Results

图5和6示出典型的X-射线光电子光谱和RHEED图像从清洗和脱氧Ge衬底。 26,39另外一个成功脱氧Ge衬底的特征在于它的“笑脸”2×1重构的RHEED图案中,菊池线也在RHEED图像,这表明该清洁和试样的长程有序观察。40锐度和衍射图案的强度也证明了表面的清洁度。葛三维 X射线光电子能谱应该是免费的氧化戈峰,在​​30 eV的观察戈<…

Discussion

生长外延钙钛矿使用ALD当Ge衬底的清洁度是成功的关键。的时间一Ge衬底脱脂和脱氧,和脱氧和STO沉积之间的时间量之间花费的量,应保持在最低限度。样品仍然受到连特高压环境下的污染物暴露。长期接触可能会导致不定碳或再氧化锗的再沉积,导致薄膜生长不良。这个小组已聘请(丙酮/ IPA / DI水随后紫外臭氧接触超声)一种广泛使用的脱脂方法去除碳污染物。超高真空条件下的另一个使用步?…

Divulgazioni

The authors have nothing to disclose.

Acknowledgements

This research was supported by the National Science Foundation (Awards CMMI-1437050 and DMR-1207342), the Office of Naval Research (Grant N00014-10-10489), and the Air Force Office of Scientific Research (Grant FA9550-14-1-0090).

Materials

MBE DCA M600
Cryopump for MBE Brooks Automation, Inc. On-Board 8
Residual Gas Analyzer for MBE Extorr, Inc. XT200M
ALD Reaction Chamber Huntington Mechanical Laboratories N/A Custom manufactured, hot-wall, stainless steel, rectangular (~20 cm long, 460 cm3)
ALD Saturator Swagelok/Larson Electronic Glass See comments Custom-built from parts supplied by Swagelok and Larson Electronic Glass. The saturator is made out of 316 stainless steel and Pyrex. All parts are connected via butt welding. Swagelok catalog numbers:SS-4-VCR-7-8VCRF, SS-4-VCR-1, SS-8-VCR-1-03816, SS-8-VCR-3-8MTW, 316L-12TB7-6-8, SS-8-VCR-9, SS-4-VCR-3-4MTW, SS-T2-S-028-20  Larson Electronic Glass catalog number: SP-075-T
Manual Valves for Saturators Swagelok SS-DLVCR4-P and 6LVV-DPFR4-P. Both diaphragm-sealed valves are used interchangably by this group. The specific connectors (VCR male/female/etc.) to use will depend on the actual system design.
ALD Valves Swagelok 6LVV-ALD3TC333P-CV
ALD System Tubing Swagelok 316L tubing of various sizes. This group uses inner diameter of 1/4"
ALD power supply AMETEK Programmable Power, Inc. Sorensen DCS80-13E
ALD Temperature Controller Schneider Electric Eurotherm 818P4
ALD Valve Controller  National Instruments LabView Program developed within the group
XPS VG Scienta
RHEED Staib Instruments CB801420 18 keV at ~3° incident angle
RHEED Analysis System k-Space Associates kSA 400
Digital UV Ozone System Novascan PSD-UV 6
Ozone Elimination System Novascan PSD-UV OES-1000D
Strontium bis(triisopropylcyclopentadienyl) Air Liquide HyperSr Mildly reactive to air and water. Further information supplied by Air Liquide can be found at https://www.airliquide.de/inc/dokument.php/standard/1148/airliquide-hypersr-datasheet.pdf
Titanium tetraisopropoxide (TTIP) Sigma-Aldrich 87560 Flammable in liquid and vapor phase
Ge (001) wafer MTI Corporation GESBA100D05C1 4", single-side polished Sb-doped wafer with ρ ≈ 0.04 Ω-cm
Argon (UHP) Praxair N/A
Deionized Water N/A N/A 18.2 MΩ-cm

Riferimenti

  1. Phan, M. -. H., Yu, S. -. C. Review of the magnetocaloric effect in manganite materials. J. Magn. Magn. Mater. 308 (2), 325-340 (2007).
  2. Serrate, D., Teresa, J. M. D., Ibarra, M. R. Double perovskites with ferromagnetism above room temperature. J. Phys. Condens. Matter. 19 (2), 023201 (2007).
  3. Cheng, J. -. G., Zhou, J. -. S., Goodenough, J. B., Jin, C. -. Q. Critical behavior of ferromagnetic perovskite ruthenates. Phys. Rev. B. 85 (18), 184430 (2012).
  4. Ahn, C. H. Ferroelectricity at the Nanoscale: Local Polarization in Oxide Thin Films and Heterostructures. Science. 303 (5657), 488-491 (2004).
  5. Catalan, G., Scott, J. F. Physics and Applications of Bismuth Ferrite. Adv. Mater. 21 (24), 2463-2485 (2009).
  6. Ramesh, R., Spaldin, N. A. Multiferroics: progress and prospects in thin films. Nat. Mater. 6 (1), 21-29 (2007).
  7. Vrejoiu, I., Alexe, M., Hesse, D., Gösele, U. Functional Perovskites – From Epitaxial Films to Nanostructured Arrays. Adv. Funct. Mater. 18 (24), 3892-3906 (2008).
  8. Jang, H. W., et al. Metallic and Insulating Oxide Interfaces Controlled by Electronic Correlations. Science. 331 (6019), 886-889 (2011).
  9. Hwang, H. Y., et al. Emergent phenomena at oxide interfaces. Nat. Mater. 11 (2), 103-113 (2012).
  10. Stemmer, S., Millis, A. J. Quantum confinement in oxide quantum wells. MRS Bull. 38 (12), 1032-1039 (2013).
  11. Stemmer, S., James Allen, S. Two-Dimensional Electron Gases at Complex Oxide Interfaces. Annu. Rev. Mater. Res. 44 (1), 151-171 (2014).
  12. Biscaras, J., et al. Two-dimensional superconductivity at a Mott insulator/band insulator interface LaTiO3/SrTiO3. Nat. Commun. 1, 89 (2010).
  13. Dagotto, E. Complexity in Strongly Correlated Electronic Systems. Science. 309 (5732), 257-262 (2005).
  14. Jin, K., et al. Novel Multifunctional Properties Induced by Interface Effects in Perovskite Oxide Heterostructures. Adv. Mater. 21 (45), 4636-4640 (2009).
  15. McKee, R. A., Walker, F. J., Chisholm, M. F. Crystalline oxides on silicon: the first five monolayers. Phys. Rev. Lett. 81 (14), 3014 (1998).
  16. Warusawithana, M. P., et al. A Ferroelectric Oxide Made Directly on Silicon. Science. 324 (5925), 367-370 (2009).
  17. Niu, G., Vilquin, B., Penuelas, J., Botella, C., Hollinger, G., Saint-Girons, G. Heteroepitaxy of SrTiO3 thin films on Si (001) using different growth strategies: Toward substratelike qualitya. J. Vac. Sci. Technol. B. 29 (4), 041207 (2011).
  18. Yu, Z., et al. Advances in heteroepitaxy of oxides on silicon. Thin Solid Films. 462-463, 51-56 (2004).
  19. Yu, Z., et al. Epitaxial oxide thin films on Si (001). J. Vac. Sci. Technol. B. 18 (4), 2139-2145 (2000).
  20. Demkov, A. A., Zhang, X. Theory of the Sr-induced reconstruction of the Si (001) surface. J. Appl. Phys. 103 (10), 103710 (2008).
  21. Zhang, X., et al. Atomic and electronic structure of the Si/SrTiO3 interface. Phys. Rev. B. 68 (12), 125323 (2003).
  22. Ashman, C. R., Först, C. J., Schwarz, K., Blöchl, P. E. First-principles calculations of strontium on Si(001). Phys. Rev. B. 69 (7), 075309 (2004).
  23. Kamata, Y. High-k/Ge MOSFETs for future nanoelectronics. Mater. Today. 11 (1-2), 30-38 (2008).
  24. Fischetti, M. V., Laux, S. E. Band structure, deformation potentials, and carrier mobility in strained Si, Ge, and SiGe alloys. J. Appl. Phys. 80 (4), 2234-2252 (1996).
  25. Liang, Y., Gan, S., Wei, Y., Gregory, R. Effect of Sr adsorption on stability of and epitaxial SrTiO3 growth on Si(001) surface. Phys. Status Solidi B. 243 (9), 2098-2104 (2006).
  26. McDaniel, M. D., et al. A Chemical Route to Monolithic Integration of Crystalline Oxides on Semiconductors. Adv. Mater. Interfaces. 1 (8), (2014).
  27. Leskelä, M., Ritala, M. Atomic layer deposition (ALD): from precursors to thin film structures. Thin Solid Films. 409 (1), 138-146 (2002).
  28. George, S. M. Atomic Layer Deposition: An Overview. Chem. Rev. 110 (1), 111-131 (2010).
  29. McDaniel, M. D., Posadas, A., Wang, T., Demkov, A. A., Ekerdt, J. G. Growth and characterization of epitaxial anatase TiO2(001) on SrTiO3-buffered Si(001) using atomic layer deposition. Thin Solid Films. 520 (21), 6525-6530 (2012).
  30. McDaniel, M. D., et al. Growth of epitaxial oxides on silicon using atomic layer deposition: Crystallization and annealing of TiO2 on SrTiO3-buffered Si(001). J. Vac. Sci. Technol. B. 30 (4), 04E11 (2012).
  31. McDaniel, M. D., et al. Epitaxial strontium titanate films grown by atomic layer deposition on SrTiO3-buffered Si(001) substrates. J. Vac. Sci. Technol. A. 31 (1), 01A136 (2013).
  32. Ngo, T. Q., et al. Epitaxial growth of LaAlO3 on SrTiO3-buffered Si (001) substrates by atomic layer deposition. J. Cryst. Growth. 363, 150-157 (2013).
  33. Ngo, T. Q., et al. Epitaxial c-axis oriented BaTiO3 thin films on SrTiO3-buffered Si(001) by atomic layer deposition. Appl. Phys. Lett. 104 (8), 082910 (2014).
  34. McDaniel, M. D., et al. Incorporation of La in epitaxial SrTiO3 thin films grown by atomic layer deposition on SrTiO3-buffered Si (001) substrates. J. Appl. Phys. 115 (22), 224108 (2014).
  35. McDaniel, M. D., et al. Atomic layer deposition of crystalline SrHfO3 directly on Ge (001) for high-k dielectric applications. J. Appl. Phys. 117 (5), 054101 (2015).
  36. Jahangir-Moghadam, M., et al. Band-Gap Engineering at a Semiconductor-Crystalline Oxide Interface. Adv. Mater. Interfaces. 2 (4), (2015).
  37. Posadas, A., et al. Epitaxial integration of ferromagnetic correlated oxide LaCoO3 with Si (100). Appl. Phys. Lett. 98 (5), 053104 (2011).
  38. Ponath, P., Posadas, A. B., Hatch, R. C., Demkov, A. A. Preparation of a clean Ge(001) surface using oxygen plasma cleaning. J. Vac. Sci. Technol. B. 31 (3), 031201 (2013).
  39. Braun, W. . Applied RHEED: Reflection High-Energy Electron Diffraction During Crystal Growth. , (1999).
  40. Moulder, J. F., Stickle, W. F., Sobol, P. E., Bomben, K. E. . Handbook of X-ray Photoelectron Spectroscopy. , (1992).
  41. Vehkamäki, M., Hatanpää, T., Hänninen, T., Ritala, M., Leskelä, M. Growth of SrTiO3 and BaTiO3 thin films by atomic layer deposition. Electrochem. Solid-State Lett. 2 (10), 504-506 (1999).
  42. Vehkamäki, M., et al. Atomic Layer Deposition of SrTiO3 Thin Films from a Novel Strontium Precursor-Strontium-bis(tri-isopropyl cyclopentadienyl). Chem. Vap. Depos. 7 (2), 75-80 (2001).
  43. Ritala, M., Leskelä, M., Niinisto, L., Haussalo, P. Titanium isopropoxide as a precursor in atomic layer epitaxy of titanium dioxide thin films. Chem. Mater. 5 (8), 1174-1181 (1993).
  44. Aarik, J., Aidla, A., Uustare, T., Ritala, M., Leskelä, M. Titanium isopropoxide as a precursor for atomic layer deposition: characterization of titanium dioxide growth process. Appl. Surf. Sci. 161 (3-4), 385-395 (2000).
  45. Premkumar, P. A., Delabie, A., Rodriguez, L. N. J., Moussa, A., Adelmann, C. Roughness evolution during the atomic layer deposition of metal oxides. J. Vac. Sci. Technol. A. 31 (6), 061501 (2013).

Play Video

Citazione di questo articolo
Lin, E. L., Edmondson, B. I., Hu, S., Ekerdt, J. G. Epitaxial Growth of Perovskite Strontium Titanate on Germanium via Atomic Layer Deposition. J. Vis. Exp. (113), e54268, doi:10.3791/54268 (2016).

View Video