The ex vivo upright droplet culture is an alternative to current in vitro and in vivo experimental techniques. This protocol is easy to perform and requires smaller amounts of reagent, while permitting the ability to manipulate and study fetal vascularization, morphogenesis, and organogenesis.
Investigating organogenesis in utero is a technically challenging process in placental mammals due to inaccessibility of reagents to embryos that develop within the uterus. A newly developed ex vivo upright droplet culture method provides an attractive alternative to studies performed in utero. The ex vivo droplet culture provides the ability to examine and manipulate cellular interactions and diverse signaling pathways through use of various blocking and activating compounds; additionally, the effects of various pharmacological reagents on the development of specific organs can be studied without unwanted side effects of systemic drug delivery in utero. As compared to other in vitro systems, the droplet culture not only allows for the ability to study three-dimensional morphogenesis and cell-cell interactions, which cannot be reproduced in mammalian cell lines, but also requires significantly less reagents than other ex vivo and in vitro protocols. This paper demonstrates proper mouse fetal organ dissection and upright droplet culture techniques, followed by whole organ immunofluorescence to demonstrate the effectiveness of the method. The ex vivo droplet culture method allows the formation of organ architecture comparable to what is observed in vivo and can be utilized to study otherwise difficult-to-study processes due to embryonic lethality in in vivo models. As a model application system, a small-molecule inhibitor will be utilized to probe the role of vascularization in testicular morphogenesis. This ex vivo droplet culture method is expandable to other fetal organ systems, such as lung and potentially others, although each organ must be extensively studied to determine any organ-specific modifications to the protocol. This organ culture system provides flexibility in experimentation with fetal organs, and results obtained using this technique will help researchers gain insights into fetal development.
Organ regeneration in vivo in humans is very limited; therefore, tissue engineering, the development of tissues and organs from individual cells donated by a host, is becoming an attractive potential therapy for organ replacement. However, for this therapeutic strategy to be successful, factors and cellular interactions involved in morphogenesis of the organ must be thoroughly studied and well-understood. Due to the inability to study development of specific organs with traditional approaches, researchers have turned to alternative whole embryo or whole organ cultures. Kalaskar et al.1 have shown that ex vivo whole embryogenesis culture yields comparable results (in 58% of cultured embryos) to in utero development, suggesting that ex vivo culture methods are a feasible alternative for organogenesis studies.
An individualized organ culture system, such as this ex vivo droplet culture system, allows for whole organ analysis independent of systemic effects, while permitting manipulation of a specific signaling pathway or cellular interactions via addition of pharmacological reagents or antibodies. Traditionally, the study of fetal organ development has been limited to transgenic and knockout mouse technologies, in addition to pharmacological reagents delivered maternally. However, there are technical issues involving these techniques and treatments in vivo; most concerns revolve around the effects of influencing various organs simultaneously which often results in embryonic lethality. An additional concern of studies manipulating fetal development pharmacologically is the maternal effect of drugs on embryonic development in utero (e.g., maternal metabolism of the drug before it reaches the embryo) and if such reagents can pass through the placental barrier.
The whole organ culture technique described here was adapted from a protocol first described by Maatouk et al.2, in which whole fetal gonads are incubated in ex vivo upright droplet cultures. One significant advantage of culturing fetal gonads is that small-molecule inhibitors can readily access the whole organ by simple diffusion. DeFalco et al. have shown that utilizing this ex vivo droplet culture method in conjunction with small-molecule inhibitors can be used to study signaling processes and interactions occurring during gonad development3; these processes would be difficult to examine in vivo due to technical challenges (e.g., passage of drugs through the placenta or lethality of affecting multiple organs using genetic or pharmacological approaches).
The droplet culture is not only an improvement in certain aspects over in utero experimentation, but also it is an improvement over in vitro and ex vivo systems as well. The use of cell lines to study morphogenesis is extremely difficult because they lack the diverse cell types, lack critical extracellular matrix (ECM) components that permit the formation of organ architecture, and can exhibit artifacts in signaling cascades. Although tissue engineering has made significant improvements in creating scaffolds simulating ECM, the lack of knowledge with regard to which signals are required by each cell type during organogenesis makes it challenging to build an organ system in vitro. Other ex vivo systems have been previously established to study organogenesis, or more specifically morphogenesis, and have been very successful for live imaging of fetal organs in agar4, transwells5, filters6, and other scaffold matrices7,8. The advantage of the droplet culture system is that it allows the study of morphogenesis by providing the ability to utilize less reagents, which are often expensive, but also giving the organ surface tension, which is important for growth and signaling capabilities9.
In the mouse, initial testis morphogenesis takes place between embryonic (E) stages E11.5 and E13.5; these stages comprise the optimal time window for examining factors that influence sex-specific differentiation. Among the critical processes that occur during testis formation are the generation of testis cord architecture and the formation of a testis-specific vascular network. Utilizing this ex vivo whole organ droplet culture system, one is able to alter male-specific vascularization and inhibit testis morphogenesis through the use of a small-molecule inhibitor that blocks the activity of the receptors for vascular endothelial growth factor (VEGF); VEGF-mediated vascular remodeling is critical for testis development10-12. This technique can successfully be applied to other organs and can target specific time windows of development. Whole-mount organ imaging allows the visualization of vital structures as well as structural and cellular changes resulting from the administration of various inhibitors. Importantly, this system is advantageous in that the researcher can bypass potential confounding effects from maternal drug administration or systemic disruption during in vivo targeted gene strategies. Thus, this whole organ ex vivo droplet culture system can significantly improve the ability to understand the interactions and signaling which occur specifically within particular organs during fetal development.
All mice used in these studies were CD-1 mice obtained from Charles River Laboratories. Previous culture experiments have also been performed on other strains, such as C57BL/6J (data not shown), but any strain can be used. Pregnant adult females were approximately 2-3 months old and were euthanized via CO2 inhalation followed by cervical dislocation and bilateral thoracotomy prior to embryo removal. Mice were housed in accordance with NIH guidelines, and experimental protocols were approved by the Institutional Animal Care and Use Committee of Cincinnati Children’s Hospital Medical Center.
1. Preparation of Instruments, Culture Media, and Dishes
2. Isolation of Fetal Testes from Mus musculus
3. Culturing of Gonad with a Small-molecule Inhibitor
4. Polymerase Chain Reaction for Determining the Sex of Embryos
5. Whole Mount Organ Immunofluorescence
Day 1:
Day 2:
Day 3:
The ex vivo droplet culture allows one to manipulate whole organs, such as the gonad, to study cellular interactions and dynamics. Figure 1 demonstrates in a step-wise fashion how to prepare an E11.5 gonadal droplet culture. The first steps in the culture protocol include the initial removal of the embryo-containing uterus from the mother mouse (Figure 1A and 1B). After removal of the uterus from the mother, the uterine wall is cut and the embryos are liberated from the yolk sac into PBS for further dissection (Figure 1C-E). After the removal of visceral organs, the urogenital ridge is clearly visible along the back body wall of the embryo (Figure 1F) and is isolated (Figure 1G). The gonad-mesonephros complex is then dissected away from the urogenital ridge (Figure 1H), and is placed into droplet culture with small-molecule inhibitor (Figure 1I, left: “T” for treated) and without small-molecule inhibitor (Figure 1I, right: “C” for control). The small dishes containing the droplets are enclosed in a make-shift humidified chamber (Figure 1J) and incubated at 37 °C and 5% CO2 for 48 hr.
After 48-hr incubation the cultured organs are removed, washed with PBS, and are subjected to a whole mount immunofluorescence protocol to assess the effectiveness of the culture and the drug treatment; alternatively, they can be processed for RNA extraction for gene expression analyses. Fetal whole gonad-mesonephros complexes (E11.5 and older) have a high survival rate when transferred to culture media immediately after a clean dissection and cultured under normal conditions (37 °C and 5% CO2) for 48 hr (but they can be potentially cultured for longer if necessary). Comparisons of E11.5 gonads under brightfield microscopy at initial incubation versus after 24 or 48 hr of culture reveal a dramatic change in gonad shape and the appearance of stripe-like cord structures in the control XY gonad (Figure 2). Therefore, after culturing for 48 hr, the development is comparable to that of E13.5 in utero gonads (Figure 2). Additionally, the E11.5 fetal lung grows and displays increased branching that normally occurs during this phase in development (Figure 2). The culture process generally results in smaller organs as compared to in utero, most likely due to fact that the culture conditions are not as optimal for growth relative to the in utero environment (see Discussion).
Although the size of the organs resulting from the 48 hr culture differs from that of in utero-developed organs, ex vivo cultured organs show similar tissue architecture and can serve as reasonable surrogates (Figures 3 and 4). To characterize organ architecture and morphogenesis, markers that specifically label critical organ cell types were used, such as SOX9 for testis Sertoli cells and lung branching cells, E-cadherin for lung epithelial cells, PECAM1 for germ cells and vasculature, and cleaved Caspase 3 for apoptotic cells (Figures 3 and 4). Sox9, encoding a transcription factor, plays an important role in fetal organ proliferation, differentiation, and extracellular matrix formation. Therefore, in both organs, SOX9 is utilized as a common architectural marker that labels Sertoli cells located within the testis cords14-16 and branching structures within the lungs17.
Gonad cultures in particular recreate in utero morphogenesis effectively. The mouse gonad is specified at embryonic (E) stage E10.0 and is initially morphologically identical in XY (male) and XX (female) embryos. The expression of the Sry (Sex determining region of Y chromosome) gene in XY gonads starting at E10.5 drives major molecular and morphological changes that occur rapidly between E11.5 and E13.5 in the fetal testis19, including: the specification of Sertoli cells, the supporting cell lineage of the testis; the formation of testis cords, which are comprised of Sertoli and germ cells and are the fetal precursors to adult seminiferous tubules; and major vascular remodeling. In male-specific vascular remodeling, endothelial cells released from a vascular plexus in the neighboring mesonephros migrate into the gonad to form a testis-specific arterial system4,20. Immunofluorescent analyses reveal well-developed testis cord structures and vasculature in E13.5 in utero testes relative to E11.5 testes (Figure 3). As the images in Figure 3 show, the droplet culture system can recreate testis differentiation events ex vivo, as it is possible to visualize SOX9-positive Sertoli cells in XY gonads forming into tubule-like cords and vasculature forming throughout the organ. With respect to lungs, 48-hr culture results in increased branching of SOX9/E-cadherin double-positive epithelial branches over the course of 2 days (Figure 4). Furthermore, we see similar levels of apoptosis in control cultured and in utero gonads, while there is some increase in apoptotic cells in lungs in the same culture conditions (Figures 3 and 4), suggesting that the gonad is particularly amenable to the culture conditions.
Small-molecule inhibitors can be used to study organ development by affecting cellular localization, proliferation, and cell cycle status, as well as organ architecture and various signaling cascades. The ex vivo whole organ droplet method allows the researcher to administer pharmacological reagents easily to fetal organs in a very small volume of culture media. To examine the effects of vascularization and vascular remodeling on testis differentiation and morphogenesis, we used the small-molecule inhibitor TKI II, a reagent that disrupts testis vascular development3 by blocking the activity of VEGF receptors; the formation of fetal testis architecture occurs in a vascular-dependent manner, acting through vascular endothelial growth factor A (VEGFA)11,12. While vascularization of the testis is critical for the export of testosterone that drives virilization of the embryo, it is also a major driver of testis cord morphogenesis: previous work has shown that when VEGFA signaling is blocked at or prior to E11.5, Sertoli cells fail to partition out from surrounding interstitial cells and no cord structures form3,12. The results shown here demonstrate that disruption of vascular remodeling in the fetal testis is effective in the droplet culture system, and subsequent defects in testis morphogenesis (i.e., abnormal testis cord formation) can be visualized (Figure 3). It should be noted that PECAM1, a marker for endothelial cells, is also expressed by germ cells (Figure 3); this germ cell staining is an internal control that shows that lack of vascular staining in treated gonads is not due to technical reasons, and also demonstrates that other cell types such as germ cells are not affected by the drug treatment. Given that most initial testis morphogenesis takes place between E11.5 and E13.5, these stages are the optimal window for determining factors which influence sex-specific differentiation, in particular the role of VEGF and vascular remodeling in the gonad.
The use of TKI II during lung development between E11.5 and E13.5 shows that small-molecule inhibition of vasculature can be reproduced in another organ (Figure 4). These result shows the efficacy of the ex vivo fetal organ droplet culture model system and the ability to use small-molecule inhibitors to alter signaling pathways within organs. Given the ease, flexibility, and efficacy of this protocol, the droplet culture provides a suitable alternative for experimental questions regarding organ development that cannot be addressed in vivo.
Figure 1. Steps in the in vitro whole organ droplet culture protocol. (A) Euthanized pregnant mouse with opened peritoneal cavity. (B) Uterine horn with embryos enclosed. (C) Close-up view of opened uterine wall with exposed embryo-containing yolk sac. (D) A single embryo (e) is attached to the placenta (p) enclosed within the yolk sac (y). (E) Embryo separated from placenta and yolk sac. (F) Dissected embryo with visceral organs removed and urogenital ridge exposed (gonads within urogenital ridge outlined in black). (G) Close-up of isolated of urogenital ridge (gonad-mesonephros complexes outlined in black). Asterisk denotes dorsal aorta in G and H. (H) Separation of gonad-mesonephros complex from urogenital ridge (dissection depicted by black dashed line). g, gonad; m, mesonephros. (I) Set-up of droplet cultures within 35-mm culture dish lid. Black arrows point to gonads within the droplets. T, treated; C, control. (J) Two droplet culture dish lids placed within an open humidified chamber. Please click here to view a larger version of this figure.
Figure 2. Development of ex vivo droplet cultured organs relative to in utero organs. Brightfield images of: E11.5 in-utero-developed organs (gonads and lungs) (first column); E11.5 organs after 24 hr (second column) and 48 hr droplet control culture (third column); E11.5 organs cultured for 48 hr with TKI II VEGFR inhibitor (fourth column); and E13.5 in-utero-developed organs (fifth column). Gonads are oriented with gonad (clear structure) above the mesonephros (opaque structure). E11.5 gonads are bipotential and appear morphologically identical in XY (male) and XX (female) samples. Scale bar, 500 μm. Please click here to view a larger version of this figure.
Figure 3. Ex vivo droplet culture testes are comparable in tissue architecture and cell death to in-utero-developedcounterparts. Immunofluorescent images of: E11.5 in-utero-developed fetal testes (first column); control E11.5 testes after 48 hr of control ex vivo droplet culture (second column); E11.5 testes after 48 hr of ex vivo droplet culture with TKI II VEGFR inhibitor (third column); and E13.5 in-utero-developed testes (fourth column). Dashed lines indicate gonad-mesonephros border (gonad is oriented on top). SOX9 is a marker of Sertoli cells and is used to visualize testis cord architecture; PECAM1 is expressed in germ and vascular endothelial cells (therefore, remaining PECAM1 staining in treated gonads is almost exclusively germ cells); and cleaved Caspase 3 is a marker of apoptotic cells. Cultured control gonads showed similar testis cord formation, testis-specific vascularization (arrows throughout figure), and levels of apoptosis relative to in-utero-developed counterparts, while TKI-II-cultured gonads exhibited disrupted vasculature and abnormal testis cord morphogenesis. Brackets indicate surface domain of gonad where vasculature normally is present but is not detected in treated samples. Arrowheads point to dying vascular cell clumps in TKI-II-treated testes. Scale bar, 100 μm. Please click here to view a larger version of this figure.
Figure 4. Other fetal organs (lung) cultured ex vivo in droplets are comparable to in- utero-developed organs. Immunofluorescent images of: E11.5 in-utero-developed lungs (first column); E11.5 lungs after 48 hr of control ex vivo droplet culture (second column); E11.5 lungs after 48 hr of ex vivo droplet culture with TKI II VEGFR inhibitor (third column); and E13.5 in-utero-developed lungs (fourth column). SOX9 labels branching cells; E-cadherin marks epithelial tubular structures; PECAM1 labels vascular endothelium; and cleaved Caspase 3 marks apoptotic cells. Ex vivo control cultured organs show similar architecture and expression of SOX9, E-cadherin, and PECAM1 in cultured organs compared to in-utero-developed organs, but varying amounts of cell death. Upon treatment with TKI II, vascular development is significantly reduced in lungs (as revealed by PECAM1 staining). Scale bar, 100 μm. Please click here to view a larger version of this figure.
Step | Temperature | Time | Number of Cycles |
Starting | 94 °C | 2 min | 1 cycle |
Denaturing | 94 °C | 15 sec | 35 cycles |
Annealing | 57 °C | 30 sec | |
Elongation | 72 °C | 30 sec | |
End | 72 °C | 5 min | 1 cycle |
Table 1: XY PCR Analysis Program. Cycle parameters for “XY (Short)” PCR program used for XX/XY genotyping of embryos.
This study demonstrates an ex vivo whole organ droplet method that has many potential applications for studying fetal development. This technique can be used for multiple organs, and allows the researcher to address biological questions that are difficult to examine using in vivo approaches due to inaccessibility of embryos and potential embryonic lethality. This culture method has additional benefits over other in vitro approaches such as mammalian cell lines: whole organs can be used, therefore maintaining critical intercellular interactions that are present in utero; and the culture volume is very small (~30 μl), thus using very small amounts of rare or expensive pharmaceutical reagents.
Critical aspects of the droplet culture protocol include: a) clean dissection of the organ. Clean dissection allows tissue architecture to be maintained and minimizes the number of exposed cut or damaged surfaces, which may be attracted to the culture dish surface and may disturb the culture; b) proper orientation of the organ within the droplet, in order to allow organ growth and morphogenesis; c) making the droplet the appropriate size, so that the droplet maintains the organ in place by surface tension but also does not dry out; d) using the correct droplet volume for the organ. Droplet volume should be determined empirically and according to organ size. However, 30 μl should be a reasonable starting point. e) choosing a relevant stage of development to address the biological question of interest; and f) maintaining a sterile culture environment, to avoid contamination which can damage the tissue within the droplet.
This paper mainly focuses on the E11.5-E13.5 gonad (i.e., during initial sexual differentiation), but also shows that this protocol can be applied to other organs. Potential modifications of this protocol for other organs include: a) altering the droplet volume for a particular organ and/or stage of development. This culture method is applicable for all fetal stages for the gonad, but the volume should be adjusted for later fetal stages of larger organs. There is likely a limit to which fetal stages can be used for larger organs, given that simple diffusion will not allow nutrients or reagents to penetrate large tissues very effectively at later stages. It is therefore recommended to use this culture for fetal organs at the earliest stage possible for the experiment. b) adding exogenous growth factors, hormones, or other factors to the culture media. Certain organs may require a given protein or hormone to undergo normal morphogenesis; therefore, this protocol can be modified by the addition of such reagents to the culture media. c) adjusting the length of time in culture. While initial testis development can occur in as little as 24 hr, other organs may require longer periods of time in culture. If the droplets are kept sterile, the tissue may be amenable to up to 4 or even 5 days in culture. For longer periods of culture (more than 48 hr), to remove ammonia or other built-up waste byproducts it may be necessary to refresh the media daily (with associated reagents) in the droplets by removing a set volume of the droplet and replacing that same volume with fresh media; for treated droplets, fresh media should contain the same concentration of drug/reagent as in the initial treatment. d) altering composition of media and/or associated reagents. Some tissues may require more or less of a given pharmaceutical reagent to elicit a desired effect. It is recommended to try a serial dilution of concentrations and assessing cell death (via cleaved Caspase 3 staining) to find an optimum concentration that will block/activate the desired pathway but not induce significant cell death in the cultured organs. e) the use of internal controls. Since organs such as the gonad come in pairs, one gonad can serve as an ideal internal control for the contralateral treated gonad. Other organs such as liver do not come in pairs; if the mouse strain used is rare and samples are limited, it is possible to dissect the organ in half and use each half for control and treated samples. One must keep in mind that organs, even those that come in pairs, may show asymmetry (such as different number of lobes for each side of the lung), so one must take note of which side of the organ is being used for control and treatment samples.
While droplet cultures can potentially recreate virtually all aspects of in utero development, there are some limitations to this technique. One is that droplet cultures, and ex vivo culture techniques in general, result in consistently slower growth rates relative to in utero development1,5; this is likely due to a number of factors, such as lower concentrations of required growth factors in culture media (and their access to the tissue) and limited neovascularization that occurs ex vivo. In addition to size of the organ, there is a concern that, if the explant is not properly oriented or the droplet is the incorrect size, tissue morphology may become flattened or distorted with a lack of a support structure that is provided by an agar bed in other protocols. However, this problem can be avoided with optimization of the protocol parameters. Another potential limiting factor is how well media and reagents can diffuse throughout the entire organ; while these cultured tissues have blood vessels, there is no perfusion of nutrients and oxygen through these vessels ex vivo due to lack of blood flow, so instead diffusion becomes a factor. This limitation is especially evident in postnatal testis cultures, in which ex vivo spermatogenesis is well-sustained in the periphery of the explant but the center-most portion of the tissue (i.e., farthest from the media) degenerates21-23. Given those observations, it appears that size is a general limiting factor for whole organ culture or large-size explant protocols. However, general morphogenetic programs, such as branching morphogenesis in the fetal lung and de novo testis cord formation in the fetal gonad, still occur in droplet cultures. Therefore, these basic processes can still be studied using this technique.
This whole organ protocol was first described by Maatouk et al.2, who adapted it from the previous agar-based culture method by Coveney et al.4 The benefit of culturing organs ex vivo via droplets rather than in agar wells is that it uses at least a 10-fold reduced culture volume, thus conserving reagents; additionally, the droplet method does not involve pre-incubating the agar wells in reagent-containing media, which saves time and bypasses any concerns about the efficiency of reagents being delivered to the tissue through agar. While agar-based methods are generally thought to preserve more faithfully three-dimensional architecture of the tissue, proper orientation of the explant and optimization of culture conditions (see above) will ensure normal morphology of droplet-cultured organs.
These results demonstrate that ex vivo droplet cultured fetal gonads exhibit growth and morphogenesis comparable to that of in-utero-developed organs. This culture technique is not restricted to the gonad, but also can be applied to other fetal organs such as the lung. This ex vivo organ droplet method will be useful for studies of whole organ signaling and organ-specific cellular interactions, helped in part by the ability to image whole organs after culture and drug treatment. The study described here utilized a small-molecule inhibitor to investigate the influence of vascularization on morphogenesis, but a plethora of commercially available pharmacological reagents is available to study a multitude of signaling pathways and biological processes. Therefore, there are many potential future uses for this droplet culture method that will allow researchers to probe interesting and significant questions in developmental biology.
The authors have nothing to disclose.
The authors were supported by: a CancerFree KIDS Research Grant, a March of Dimes Basil O’Connor Starter Scholar Award (#5-FY14-32), a Cincinnati Children’s Hospital Medical Center (CCHMC) Trustee Grant Award; a CCHMC Research Innovation and Pilot Funding Award; and CCHMC developmental funds. Authors also acknowledge the Capel laboratory for the initial optimization of this technique.
Superfrost Plus Microscope Slides | Fisherbrand | 12-550-15 | |
Cover Glasses: Squares (22 mm x 22 mm, No. 1.5) | Fisherbrand | 12-541B | |
Sally Hansen Xtreme Wear Nail Polish, Invisible | Sally Hansen | N/A | |
8-Strip 0.2 mL PCR Tubes & Detached Flat Caps | GeneMate | T3218-1 | |
Pipetman L P1000L, P200L, P20L, P10L, P2L | Gilson | FA10006M, FA10005M, FA10003M, FA10002M, FA10001M | |
Dumont #5 Forceps | FST | 91150-20 | |
Fine Scissors | FST | 91460-11 | |
Posi-Click 1.7 ml microcentrifuge tubes | Denville | C2170 | |
Posi-Click 0.6 ml microcentrifuge tubes | Denville | C2176 | |
10 μl SHARP Precision Barrier Tips | Denville | P1096FR | |
20 μl SHARP Precision Barrier Tips | Denville | P1121 | |
200 μl SHARP Precision Barrier Tips | Denville | P1122 | |
1000 μl SHARP Precision Barrier Tips | Denville | P1126 | |
1 ml syringe with 27gauge needles | BD PrecisionGlide | 309623 | |
10 ml syringe | BD | 305559 | |
0.2 μM PES syringe filter | VWR | 28145-501 | |
Grade 3 Qualitative Filter Paper Standard Grade, circle, 185 mm | Whatman | 1003-185 | |
Primaria 35mm Easy Grip Style Cell Culture Dish | Falcon/Corning | 353801 | |
Petri Dishes, Sterile (100 mm x 15 mm) | VWR | 25384-088 | |
New Brunswick Galaxy 14 S CO2 Incubator | Eppendorf | CO14S-120-0000 | |
Biosafety Cabinet | Nuare | NU-425-400 | |
Mini-centrifuge | Fisher Scientific | 05-090-100 | |
BioExpress GyroMixer Variable XL | GeneMate | R-3200-1XL | |
Mastercycler Pro Thermal Cycler with control panel | Eppendorf | 950040015 | |
SMZ445 stereomicroscope | Nikon | SMZ445 | |
MultiImage Light Cabinet with AlphaEase Software | Alpha Innotech Corporation | Discontinued | |
Absolute 200 proof Ethanol | Fisher | BP2818-500 | |
Triton X-100 | Fisher | BP151-100 | |
Sodium Phosphate (Dibasic MW 142) Na2HPO4 | Fisher | S374-1 | |
Potassium Phosphate (Monobasic MW 136) KH2PO4 | Sigma-Aldrich | P5379-1KG | |
Sodium Chloride (NaCl) | Fisher | S671-3 | |
Potassium Chloride (KCl) | Sigma-Aldrich | P3911-1KG | |
Magnesium Chloride (MgCl2) | Sigma | M2393-100g | |
Calcium Chloride (CaCl2) | Sigma | C5670-100g | |
Ambion Nuclease-Free Water | Life Technologies | AM9938 | |
XY PCR Primer | IDT | N/A | |
Glacial Acetic Acid | Fisher | A38-500 | |
Ethylenediamine Tetraacetic Acid (EDTA) | Fisher | BP2482-1 | |
1% Ethidium bromide solution | Fisher | BP1302-10 | Toxic |
Agarose | GeneMate | E-3120-500 | |
Sodium Hydroxide (NaOH) | Sigma-Aldrich | 367176-2.5KG | |
Trizma Base | Sigma | T1503-1KG | |
dNTP Set, 100 mM Solutions | Thermo Scientific | R0182 | |
DNA Choice Taq polymerase with 10x Buffer | Denville | CB-4050-3 | |
Paraformaldehyde | Fisher | O4042-500 | Toxic |
FluorMount-G | Southern Biotech | 0100-01 | |
Hydrogen Chloride (HCl) | Fisher | A144212 | |
Bovine Serum Albumin (BSA), powder, Fraction V, Heat shock isolation | Bioexpress | 0332-100g | |
Dulbecco's Modified Eagle Medium (DMEM) | Life Technologies | 11965-092 | |
Fetal Bovine Serum (FBS), triple 100-nm filtered | Fisher | 03-600-511 | Heat-inactivate before using |
Penicillin-Streptomycin (10,000 U/mL) | Life Technologies | 15140-122 | Use at 1:100 |
Dimethyl sulfoxide (DMSO), Hybri-max, sterile-filtered | Sigma | D2650 | |
VEGFR Tyrosine Kinase Inhibitor II – CAS 269390-69-4 – Calbiochem | EMD Millipore | 676481 | |
Rabbit Anti-Sox9 Antibody | Millipore | AB5535 | Use at dilution: 1:4,000 |
Rat Anti-Mouse PECAM1 (CD31) Antibody | BD Pharmingen | 553370 | Use at dilution: 1:250 |
Rabbit Cleaved Caspase-3 (Asp175) Antibody | Cell Signaling | 9661S | Use at dilution: 1:250 |
Rat E-cadherin / CDH1 Antibody (ECCD-2) | Life Technologies | 13-1900 | Use at dilution: 1:500 |
Hoechst 3342, trihydrochloride, trihydrate | Invitrogen (Molecular Probes) | H1399 | Use at 2ug/ml |
Cy3 AffiniPure Donkey Anti-Rat IgG (H+L) | Jackson Immunoresearch | 712-165-153 | Use at dilution: 1:500 |
Alexa Fluor 647 AffiniPure Donkey Anti-Rat IgG (H+L) | Jackson Immunoresearch | 712-605-153 | Use at dilution: 1:500 |
Donkey anti-Rabbit IgG (H+L) Secondary Antibody, Alexa Fluor 555 conjugate | Life Technologies | A31572 | Use at dilution: 1:500 |
Donkey anti-Rabbit IgG (H+L) Secondary Antibody, Alexa Fluor 488 conjugate | Life Technologies | A21206 | Use at dilution: 1:500 |
Donkey anti-Rat IgG (H+L) Secondary Antibody, Alexa Fluor 488 conjugate | Life Technologies | A21208 | Use at dilution: 1:500 |
Donkey anti-Rabbit IgG (H+L) Secondary Antibody, Alexa Fluor 647 conjugate | Life Technologies | A31573 | Use at dilution: 1:500 |