Here, we present a protocol to inject ultrasound microbubble contrast agents into living, isolated late-gestation stage murine embryos. This method enables the study of perfusion parameters and of vascular molecular markers within the embryo using contrast-enhanced high-frequency ultrasound imaging.
Ultrasound contrast-enhanced imaging can convey essential quantitative information regarding tissue vascularity and perfusion and, in targeted applications, facilitate the detection and measure of vascular biomarkers at the molecular level. Within the mouse embryo, this noninvasive technique may be used to uncover basic mechanisms underlying vascular development in the early mouse circulatory system and in genetic models of cardiovascular disease. The mouse embryo also presents as an excellent model for studying the adhesion of microbubbles to angiogenic targets (including vascular endothelial growth factor receptor 2 (VEGFR2) or αvβ3) and for assessing the quantitative nature of molecular ultrasound. We therefore developed a method to introduce ultrasound contrast agents into the vasculature of living, isolated embryos. This allows freedom in terms of injection control and positioning, reproducibility of the imaging plane without obstruction and motion, and simplified image analysis and quantification. Late gestational stage (embryonic day (E)16.6 and E17.5) murine embryos were isolated from the uterus, gently exteriorized from the yolk sac and microbubble contrast agents were injected into veins accessible on the chorionic surface of the placental disc. Nonlinear contrast ultrasound imaging was then employed to collect a number of basic perfusion parameters (peak enhancement, wash-in rate and time to peak) and quantify targeted microbubble binding in an endoglin mouse model. We show the successful circulation of microbubbles within living embryos and the utility of this approach in characterizing embryonic vasculature and microbubble behavior.
Contrast-enhanced ultrasound imaging makes use of microbubble contrast agents to visualize and characterize the vascular environment. These agents enable noninvasive assessment of the microcirculation, vascularity and cardiovascular function. In addition, modification of the bubble surface can result in targeted microbubble binding to endothelial biomarkers, as demonstrated in preclinical applications of angiogenesis, atherosclerosis and inflammation 1,2 making molecular ultrasound imaging of vascular events possible. Contrast enhanced ultrasound can therefore be used to identify the complex and diverse environments that influence healthy and diseased vascular states3-5.
In the past number of years, interest in the utility of microbubble imaging has extended to the versatile mouse embryo model. As a model of mammalian development, introduction of microbubbles into the embryonic vasculature enhances physiological study of the developing circulatory system (e.g., blood flow, cardiac output) and in cases of transgenic and targeted mutant mouse models of cardiac disease 6,7, may yield insights into how genetic factors alter cardiovascular function. In fact, quantitative and qualitative 2D analyses of embryonic brain vasculature have already been achieved8. Furthermore, the mouse embryo presents as an excellent model for examining the binding of targeted microbubbles to vascular markers in vivo. Bartelle et al.9, for instance, have introduced avidin microbubbles into embryo cardiac ventricles to assess targeted binding in Biotag-BirA transgenic embryos and examine vascular anatomy. The generation of heterozygous and homozygous mouse models can be also be used as a surrogate for tumor model studies aiming to define the quantitative nature of molecular ultrasound – an important benchmark in translating this technique to the clinic.
Microbubbles are most frequently introduced to the embryonic circulation via intra-cardiac injections into single embryos exposed through a laparotomy8-10. In utero injections, however, face a number of challenges. These include injection guidance, the need to counter motion in the mother and exteriorized embryo, maintenance of hemodynamic viability in the mother and exteriorized embryos, addressing long-term effects of anesthesia and complications due to bleeding11. Therefore, the goal of the investigation was to develop a technique for injecting microbubbles into isolated living late-stage embryos12. This option offers more freedom in terms of injection control and positioning, reproducibility of the imaging plane without obstruction, and simplified image analysis and quantification.
In the present study, we outline a novel procedure for the injection of microbubbles into living murine embryos for the purposes of studying microbubble kinetic behavior and of studying targeted microbubble binding to endogenous endothelial surface markers. Non-linear contrast specific ultrasound imaging is used to measure of a number of basic perfusion parameters including peak enhancement (PE), wash-in rate and time to peak (TTP) in isolated E17.5 embryos. We also demonstrate the validity of the embryo model for assessing the quantitative nature of molecular ultrasound in an embryonic endoglin loss of function transgenic mouse model, where endoglin is a clinically relevant target due to its high expression in vascular endothelial cells at sites of active angiogenesis13. The adhesion of endoglin-targeted (MBE), rat isotype IgG2 control (MBC) and untargeted (MBU) microbubbles is evaluated in heterozygous endoglin (Eng+/-) and homozygous endoglin (Eng+/+) expressing embryos. Analysis of the targeted binding reveals that molecular ultrasound is capable of differentiating between endoglin genotypes and relating receptor densities to quantifiable molecular ultrasound levels.
NOTE: The experimental procedures performed in this study were approved by the Animal Care Committee at Sunnybrook Research Institute (Toronto, Ontario, Canada). Procedures for the humane treatment of animals must be observed at all times. It is assumed that the investigator is trained in the basic operation of an ultrasound imaging system. This protocol works best with two people.
1. Animal Models
2. Experimental Preparation
3. Experimental Set-up
4. Surgical Procedure
NOTE: Have an assistant prepare the bubbles (stage 5) while the surgeon commences the surgical procedure. The protocol described here has been adapted from Whiteley et al.15
5. Microbubble Preparation
NOTE: Perform molecular imaging with ultrasound using both targeted and untargeted microbubbles. A single experiment can require as many as 3 separate vials of microbubbles: i) antibody targeted microbubbles, ii) control isotype antibody targeted microbubbles and iii) untargeted microbubbles. The contrast agent comes as a dry-freeze powder and must be reconstituted with saline before injection. There are ~2 x 109 microbubbles in each untargeted microbubble vial and ~8.8 x 108 microbubbles in the target ready vials. The microbubbles are stable for up to 3 hr after reconstitution.
6. Injection of Microbubbles into Embryos
7. Ultrasound Molecular Imaging
NOTE: Using the contrast nonlinear imaging conditions set previously, position the transducer so that the embryo is situated evenly between the foci at 6 and 10 mm. Once positioned, start the bolus injection of the microbubbles. When the injection is complete, start the timer.
8. Handling of Embryos after Injection
The injection of ultrasound contrast agents into ex utero mouse embryos is dependent on the successful isolation of living, late-gestational stage embryos from the uterus and maintenance of viability over the course of the injection and related ultrasound imaging. Once the embryo has been exteriorized and positioned, as shown in Figure 1, careful injection of contrast agent into the embryonic vasculature is possible. A typical B-mode ultrasound image of an E17.5 mouse embryo is shown in Figure 2A. The wash-in of microbubbles and corresponding enhancement in the inferior vena cava, the heart, the brain, and in the entire animal can be captured using nonlinear contrast imaging methods, thereby demonstrating the feasibility of this technique. Individual time points are depicted in Figure 2B and show the change in contrast over time.
By recording the entire wash-in and wash-out of the microbubble bolus, it is possible to measure various perfusion parameters. In an offline analysis, the contrast region trace tool was used to create 1.5 mm2 regions of interest (ROI) in the embryonic left and right brain hemispheres. The average signal intensity within these ROIs was then plotted as a function of time and smoothed using a seven point median filter. From the resulting contrast intensity curve (shown in Figure 2C), the brain peak enhancement was determined. The wash-in rate, defined as the slope between 10% and 50% of the maximum peak enhancement (PE), was also calculated. Finally, time to peak (TTP) was computed from the onset of the signal enhancement to the peak time. Differences in mean perfusion parameters across different bubble types were tested using separate t-tests12. These results, summarized in Table 1, demonstrate that the injection of microbubbles provides a valuable method for ascertaining important perfusion parameters in the developmental mouse.
Introduction of microbubbles into the embryonic vasculature also enables the use of mouse embryos as model systems to define and characterize the quantitative capacities of molecular ultrasound imaging. In the following example, a loss of function model, where genetic manipulation generated heterozygous and homozygous expression patterns of endoglin in embryonic mice, was used to test the ability of molecular ultrasound imaging to differentiate between genotypes. After microbubble injection and implementation of destruction/replenishment imaging, the ratio of the average signal intensity of the ‘pre-destruction’ to ‘post-destruction’ sequences was used to produce a measure of the molecular signal called the contrast mean power ratio (CMPR). A linear mixed model (with Bonferroni adjustments made for multiple comparisons) was performed to ascertain whether there was any significant difference between endoglin targeted, control and untargeted microbubble binding to Eng+/+ or Eng+/- embryos (identified post injection via polymerase chain reaction (PCR) of tail samples). The estimated CMPR means (mean ± 95% Confidence Interval (CI)) are presented for each microbubble and embryo type in Figure 3 and are summarized in Table 2.
These findings provide a concrete demonstration that injection of ultrasound contrast agents in isolated living embryos can be achieved. Furthermore, this protocol facilitates the assessment of perfusion parameters and may be used to compare targeted microbubble binding in embryo models of vascular disease in an effort to elucidate the capacities of molecular ultrasound imaging.
Figure 1. Experimental set-up for the injection of microbubbles into isolated embryos. A 21 MHz linear array transducer is positioned above an exteriorized living E16.5 embryo as a 20 μl microbubble solution is injected into a placental vein using a glass cannula. Scale bar = 10 mm. From Denbeigh, J.M. et al.12 with permission. Please click here to view a larger version of this figure.
Figure 2. Ultrasound Imaging of Exteriorized Living E17.5 Embryos. (A) B-mode ultrasound image of an embryo. Prior to injection of targeted microbubbles (t= 0 sec). (B) Non-linear contrast image of the embryo before and after injection of microbubbles. Nonlinear contrast image prior to microbubble injection (t = 0 sec). Only the strongly reflecting interfaces (e.g., bone) are visible, with minimal signal from the soft tissues. Below, nonlinear contrast image of microbubbles within the embryo at t= 50 sec, t = 120 sec and t = 420 sec after a bolus injection. Contrast is detected throughout the animal, including the heart and brain. (C) Perfusion parameters derived from time intensity curves. Intensity plot of microbubbles as a function of time within a single ROI in the embryonic brain. Perfusion parameters are identified on the graph, including peak enhancement (PE), wash-in rate (slope), and time to peak (TTP). Arrowheads: R = ribs, Ht = heart, Br = brain. a.u., arbitrary units; ROI, region of interest; sec, seconds. Scale bar = 3 mm. This figure has been modified from Denbeigh, J.M. et al.12. Please click here to view a larger version of this figure.
Figure 3. Summary of the average contrast mean power ratios (CMPR) for endoglin targeted (MBE), control (MBC) and untargeted microbubbles (MBU) in Eng+/+ and Eng+/- embryos. CMPRs from endoglin targeted microbubbles were significantly higher (***, p <0.001) than those collected for MBC and MBU, (not significantly different from each other, regardless of genotype). MBE binding was found to be significantly higher in Eng+/+ embryos (dark markers) compared to Eng+/- embryos (light markers). Results presented as mean ± 95% confidence interval. n indicates the number of unique embryos in each category. From Denbeigh, J.M. et al.22 with permission. Please click here to view a larger version of this figure.
Microbubble Type | T-tests | |||||
p-value | ||||||
Perfusion Parameter | MBU | MBC | MBV | MBU vs MBC | MBU vs MBV | MBC vs MBV |
Peak Enhancement, PE (a.u.) | .427 ± .063 | .490 ± .079 | .499 ± .064 | 0.19 | 0.06 | 0.81 |
Wash-in rate (a.u./sec) | .008 ± .002 | .009 ± .002 | .011 ± .002 | 0.18 | 0.01 | 0.09 |
Time to Peak, TTP (sec) | 53.75 ± 7.96 | 51.75 ± 4.46 | 45.00 ± 5.33 | 0.55 | 0.03 | 0.03 |
# embryos injected | 4 | 4 | 3 |
Table 1. Summary of E17.5 embryonic perfusion parameters. Mean ± standard deviations derived from time intensity plots for all embryo ROIs (a.u. = arbitrary units). The table includes measurements for untargeted (MBU), IgG2 control targeted (MBC) and VEGFR2 targeted (MBV) microbubbles. Separate t-tests were performed to compare groups. This table has been modified from Denbeigh, J.M. et al.12.
Microbubble type | Genotype | CMPR Mean | 95% Confidence Interval | |
MBE | Eng+/+ | 9.71 | 9.05, 10.38 | |
Eng+/- | 5.51 | 4.87, 6.15 | ||
MBC | Eng+/+ | 1.42 | 0.41, 2.43 | |
Eng+/- | 1.46 | 0.45, 2.47 | ||
MBU | Eng+/+ | 1.7 | 0.65, 2.75 | |
Eng+/- | 1.76 | 0.67, 2.84 | ||
Linear Mixed Model: Between-subject Effects | ||||
df | F | p value | ||
Genotype | 1 | 12.75 | <0.001 | |
Microbubble type | 2 | 147.65 | <0.001 | |
Genotype * Microbubble type | 2 | 18.29 | <0.001 |
Table 2. Summary of linear mixed model analysis for microbubble binding in embryos, with a Bonferroni correction for multiple comparisons. Genotype, microbubble type and the combined interaction (genotype*microbubble type) were found to be significant factors in determining CMPR. df = degrees of freedom. From Denbeigh, J.M. et al.22 with permission.
Ultrasound contrast agents were injected into late-stage gestation mouse embryos and nonlinear contrast images were acquired to measure perfusion parameters and targeted microbubble binding. Successful imaging of microbubbles within embryonic vasculature was dependent on a number of factors, the first being embryo viability. All equipment and apparatus were prepared in advance in order to minimize the time required for isolation of embryos from the uterus to the start of injection. Since the effects of single or repeated exposure to anesthesia on embryonic mice have not been studied in detail, the use of anesthesia in the mother was avoided before sacrifice16. During embryo isolation, it was important to prevent damage to the yolk sac and to ensure embryos were kept chilled at all times, in frequently refreshed embryo media. When exteriorizing the embryo prior to injection and during pinning, major vitelline vessels were avoided to limit the likelihood of bleeding, which could be lethal. We found that when reviving the embryo, it was best to first cover the placenta and then the embryo with PBS, before applying ultrasound gel to the embryo in a back and forth motion and removing any large bubbles with forceps. The remainder of the Petri dish was then filled with PBS. The use of gel and PBS limited the possibility of air pockets between the embryo and the transducer, which could impact image quality. As the embryo revived, blood began to flow, visibly pumping in the umbilical artery while the umbilical veins appeared bright red23. For reference, the branches arising from the umbilical vein usually overlay those from the umbilical artery on the placental surface. Although it was possible to inject into the placental labyrinth arterioles, injecting the microbubbles in the direction of flow reduced placental bleeding and venule injections also allowed the microbubbles to pass directly through the embryo before circulating through the placenta.
Due to their fragility, microbubble preparation and handling also required care. Ultrasound microbubbles can be destroyed under high-pressure environments. Therefore, the exact same procedure was repeated during each reconstitution and bubble concentration was measured to ensure experimental consistency. A single vial of microbubbles was typically enough for about 5-7 embryos. Since the microbubbles are stable within the vial for up to 3 hr, multiple vials were often required for a single experiment. To avoid tearing the tissue, it was best for the glass tip of the injection needle to be sharp and cut on a slight angle while approaching the vessel at as small an angle as possible. Once trimmed, the tip of the needle had to be large enough for the bubbles to flow easily through the end without clumping, but small enough to fit easily within the vessel. The ideal size was generally <100 µm. Some practice at judging the appropriate size was necessary. In the event that the tip was cut too large, or became blocked, a new glass needle was applied. It some cases, it was possible to trim the needle slightly above the blockage. It was critical that air not be allowed to enter the embryo’s vascular system during injection, as this could result in the death of the animal and was undesirable during imaging (air bubbles could lodge in the vasculature of the embryo and be detectable in the ultrasound image, artificially increasing any measured signal). Nonlinear contrast imaging performed in this protocol used a state of the art high frequency (21 MHz) micro-ultrasound system (Vevo2100) paired with linear arrays specifically designed for small animal imaging (MS250). Micro- or high frequency -ultrasound is one of the few modalities able, at this time, to provide high resolution images of living murine embryos and newborns16. This system can achieve axial and lateral resolutions of 75 µm and 165 µm respectively at depths as great as 15 mm. It was therefore possible to image the entire embryo at much higher resolutions than typically achieved using clinical instruments and the acoustic signal from microbubbles could be distinguished from tissue using nonlinear contrast imaging methods (including pulse inversion and amplitude modulation techniques24). Although we had the best success with the ultrasound settings described here, it is possible that some adjustment to these parameters will also produce satisfactory results. In all cases, a low power is required for microbubble imaging to avoid undesirable destruction of the microbubbles prior to initiation of a burst, while the short burst eliminates only a small fraction of the microbubble population. With practice, the entire procedure for a single embryo, from positioning to the completion of molecular ultrasound imaging, took approximately 15 min. We have successfully injected as many as 12 embryos from one litter in a single session.
Injection experiments were restricted to a 4 hr window due to the limited viability of the embryos. Since the distribution of microbubbles was dependent upon the circulation of the embryo itself, injections could not take place before the heart beat (E8.5) and detectable flow in the vitelline and umbilical circulation (E9.5) was established25. With maturation of the placenta not complete until E14.5, the injection of contrast agents through the placental labyrinth was limited to embryos of mid to late gestational age. Based on observations, embryos nearer to term were hardier and could withstand increases in their vascular volume better than their younger counterparts. Combined, these factors restricted contrast enhanced ultrasound imaging of the embryonic vasculature to later stages of development and angiogenic growth. This may impact the availability of transgenic mouse models, since manipulation of receptors involved in vascular development and maintenance (e.g., VEGFR2, VCAM-1) may lead to embryonic lethality or defects in the development and regulation of embryonic circulatory systems26,27. Nevertheless, a number of relevant model systems are available for vascular biomarkers of interest, including α2β128, αvβ329, platelet endothelial cell adhesion molecule-130, and vascular cell adhesion molecule-131, intercellular adhesion molecule-132 and -233 and P-selectin34. What is more, brain histogenesis begins after mid-gestation11, making the expression of angiogenic markers in this tissue likely and thereby providing an excellent alternative to the traditional tumor model for studies assessing the quantitative aspects of molecular imaging.
The ex vivo nature of the injections does present some limitations. It is important to note that after the embryos were removed from the mother and the placental labyrinth punctured, it was generally not possible (nor desirable) to do repeat injections. In addition, isolating the embryo from maternal circulation limits the supply of nutrients and O2, and embryonic health is expected to deteriorate with time. While chilling and revival prolongs the viability of the embryos, it may also impact cardiac function. For example, we observed that isolated embryos had a reduced heart rate (data not included, refer to Denbeigh et al.12) compared to those previously observed in vivo35. It is therefore likely that studies assessing cardiovascular physiology will not accurately reflect in vivo conditions. With few studies characterizing circulatory hemodynamics in the living late stage mouse embryo, however, it is difficult to say with certainty the extent to which these experimental conditions may alter physiological function. One alternative is to conduct injections in utero, either through a laparoscopic incision36 or through the belly of the pregnant mother directly37, although this approach may present its own set of challenges11. In some instances, the isolation and exteriorization of the embryo may also result in significant bleeding from the yolk sac. Although we found that we could inhibit the blood flow with ultrasound gel, any significant loss of blood could impact the delivery and concentration of microbubbles, and these animals were excluded from analysis. Finally, while isolation does limit maternal and embryonic sources of motion, periodic motion related to cardiac activity is unavoidable. We elected to image the static brain in order to directly examine the effect of receptor expression on targeted microbubble signal, however implementation of real-time motion compensated contrast-enhanced ultrasound imaging38 may extend these studies to other organs.
There are few imaging applications that are currently able to assess the vascular landscape of the living developing mouse embryo. Some studies have successfully performed live imaging of blood flow in ex vivo murine embryos using Doppler swept-source optical coherence tomography39,40, while magnetic resonance imaging, vascular corrosion casts, microcomputed tomography and optical projection tomography have been implemented postmortem16. This is unfortunate, since this period of embryonic growth can reveal crucial information regarding early vascular development and function. Microbubble imaging within living embryos could therefore contribute to our understanding of developmental physiology. It might also be used to visualize biomarker distribution in the whole body of the living mouse fetus in real-time, although this technique is unlikely to replace existing methods (including histology and fluorescent imaging) for the measurement of molecular signal in embryonic tissue. The rapidly developing mass of vessels in the embryos, however, closely resembles tumor growth, with expression of many of the same key receptors identified in tumor angiogenesis41,42 and may therefore serve as an excellent tumor surrogate for studies examining the quantitative abilities of molecular ultrasound. We therefore anticipate that the described methods will be useful not only for assessing and characterizing embryonic models of vascular health and disease through functional imaging, but offers an avenue for exploring the strengths and limitations of molecular imaging as well. Its application might also extend to other interesting areas of investigation, including in utero gene transfer therapy where microbubbles have been tested as a means of delivering naked DNA to fetal mouse tissue10. Alternatively, 3D vascular mapping of the living embryo is also possible, which may provide invaluable information as to the morphological abnormalities in genetically modified mice. Introduction of ultrasound contrast agents into isolated living embryos could therefore be another tool for increasing our understanding of vascular disease and translating contrast-enhanced ultrasound applications to the clinic.
The authors have nothing to disclose.
This work was supported by the Terry Fox Program of the National Cancer Institute of Canada.
Reagents | Company | Catalog Number | Comments/Description |
Antibodies (biotinylated, eBioscience) | Antibody choice depends on the experiment | ||
rat isotype IgG2 control | eBioscience | 13-4321-85 | This antibody/microbubble combination is often required as experimental control |
biotin anti-mouse CD309 | eBioscience | 13-5821-85 | |
Biotinylated rat MJ 7/18 antibody to mouse endoglin | In house hybridoma | Outside antibodies may also be appropriate: we have used eBioscience (13-1051-85 ) in the past | |
Distilled water | |||
Embryo media | |||
500 mL Dulbecco’s Modified Eagle’s Medium with high glucose | Sigma | D5796 | |
50 mL Fetal Bovine Serum | ATCC | 30-2020 | lot # 7592456 |
Hepes | Gibco | 15630 | 5mL, 1M |
Penicillin-Streptomycin | Gibco | 15140-122 | 5 mL, 10,000 units Pen., 10,000 ug Strep |
Ethanol, 70% | |||
Ice | |||
Paraformaldehyde | Sigma | 76240 | 4% |
Phosphate Buffered Saline [1x] | Sigma | D8537 | 1x, w/o calcium chloride & magnesium chloride |
Pregnant mouse, CD-1 | Charles River Laboratories Inc. | ||
0.9% sodium chloride (saline) | Hospira | 0409-7984-11 | |
Ultrasound contrast agent, target ready and untargeted | MicroMarker; VisualSonics Inc. | ||
Ultrasound gel (Aquasonic 100, colourless) | CSP Medical | 133-1009 | |
Equipment | |||
Cell culture plates (4) : 100×20 mm | Fisher Scientific | 08-772-22 | |
Cell culture plates (12) : 60×15 mm | Sigma | D8054 | |
Centrifuge | Sorvall Legend RT centrifuge | ||
Conical tubes, 50 mL BD Falcon | VWR | 21008-938 | |
Diluent | Beckman Coulter | Isoton II Diluent, 8448011 | |
Dissection scissors (Wagner) | Fine Science Tools | Wagner 14068-12 | |
Forceps (2), Dumont SS (0.10×0.06 mm) | Fine Science Tools | 11200-33 | |
Forceps, splinter | VWR | 25601-134 | |
Glass beaker, 2 L (Griffin Beaker) | VWR | 89000-216 | |
Glass capillaries, 1×90 mm GD-1 with filament | Narishige | GD-1 | |
Glass needle puller | Narishige | PN-30 | |
Gloves | Ansell | 4002 | |
Gross anatomy probe | Fine Science Tools | 10088-15 | |
Hot plate | VWR | 89090-994 | |
Ice bucket | Cole Parmer | RK 06274-01 | |
Imaging Platform | VisualSonics Inc. | Integrated Rail System | |
Light source, fiber-optic | Fisher Scientific | 12-562-36 | Ideally has adjustable arms |
Luers (12), polypropylene barbed female ¼-28 UNF thread | Cole Parmer | 45500-30 | |
Micro-ultrasound system, high-frequency | VisualSonics Inc. | Vevo2100 | |
Needles, 21 gauge (1”) | VWR | 305165 | |
Particle size analyzer | Beckman Coulter | Multisizer 3 Coulter Counter | |
Perforated spoon (Moria) | Fine Science Tools | MC 17 10373-17 | |
Pins (6), black anodized minutien 0.15 mm | Fine Science Tools | 26002-15 | |
Pipettors [2-20 uL, 20-200uL, 100-1000uL] | Eppendorf | Research Plus adjustable 3120000038; 3120000054; 3120000062 | |
Pipettor tips [2-200uL, 50-1000uL] | Eppendorf | epT.I.P.S. 22491334; 022491351 | |
Scissors | |||
Sylgard 184 Silicone Elastomer Kit | Dow Corning | ||
Tubing, Tygon laboratory 1/32×3/32” | VWR | 63010-007 | |
Wooden applicator stick (swab, cotton head) | VWR | CA89031-270 | |
Surgical microscope 5-8x magnification | Fisher Scientific | Steromaster | |
Syringes, 1 mL Normject | Fisher | 14-817-25 | |
Syringes (10), 30 mL | VWR | CA64000-041 | |
Syringe infusion pump | Bio-lynx | NE-1000 | |
Thermometer, -20-110oC | VWR | 89095-598 | |
Timer | VWR | 33501-418 | |
Tubes, Eppendorf | VWR | 20170-577 | |
Tube racks (3) | VWR | 82024-462 | |
Ultrasound transducer, 20 MHz | VisualSonics Inc. | MS250 | |
Vannas-Tubingen, angled up | Fine Science Tools | 15005-08 |