Here we present a protocol that generates large amounts of murine monocytes from heterogeneous bone marrow for translational applications. In comparison to others, this new method helps reduce the number of sacrificed animals and lowers costs by avoiding expensive methods such as high gradient magnetic cell separation (MACS).
As a subtype of leukocytes and progenitors of macrophages, monocytes are involved in many important processes of organisms and are often the subject of various fields in biomedical science. The method described below is a simple and effective way to isolate murine monocytes from heterogeneous bone marrow.
Bone marrow from the femur and tibia of Balb/c mice is harvested by flushing with phosphate buffered saline (PBS). Cell suspension is supplemented with macrophage-colony stimulating factor (M-CSF) and cultured on ultra-low attachment surfaces to avoid adhesion-triggered differentiation of monocytes. The properties and differentiation of monocytes are characterized at various intervals. Fluorescence activated cell sorting (FACS), with markers like CD11b, CD115, and F4/80, is used for phenotyping. At the end of cultivation, the suspension consists of 45%± 12% monocytes. By removing adhesive macrophages, the purity can be raised up to 86%± 6%. After the isolation, monocytes can be utilized in various ways, and one of the most effective and common methods for in vivo delivery is intravenous tail vein injection.
This technique of isolation and application is important for mouse model studies, especially in the fields of inflammation or immunology. Monocytes can also be used therapeutically in mouse disease models.
The isolation of monocytes is important and critical for many in vitro and in vivo studies. These cells are targets for diseases such as peripheral arterial disease, coronary heart disease, or other ischemic diseases, since collateral vessel growth is strongly driven by local inflammation. Inflammatory responses include endothelial activation and local recruitment of leukocytes, mainly monocytes, which then mature to macrophages and create a highly arteriogenic environment by secreting multiple growth factors to induce the remodeling of an arteriole into a functional collateral artery1-3. Monocytes also mature to dendritic cells, which are frequently used for immunological studies4,5 and cancer research6,7.
Problematic in the approach for monocyte isolation from peripheral blood8 is the high number of donor animals needed to produce a sufficient amount of monocytes for most analyses. Former protocols describe methods such as density gradient centrifugation and cell depletion via MACS9 when isolating monocytes; however, these techniques can alter the characteristics and functionality of monocytes which can lead to difficulties in interpretation10,11. Moreover, these methods are difficult and can reduce experimental reproducibility.
Our aim with this protocol is to provide a simple and cost effective method to generate large amounts of bone marrow-derived monocytes. Due to the high cell yield of 11 x 106 ± 3 x 106 cells obtained by this protocol, we can substantially reduce the number of mice required during the isolation of bone marrow-derived monocytes. The procedure can be completed within a minimal amount of time, and without using expensive and complicated techniques as referenced above. Here, we extract monocytes from native bone marrow suspension of donor mice, cultivate the suspension on ultralow attachment plates, and supplement the solution with 20 ng/ml M-CFS. On day 5 of incubation, cells are harvested and characterized to confirm functional and phenotypic properties.
For experiments in the field of arteriogenesis, intravenous transplantation of these bone marrow-derived monocytes into mice is an effective method of systemic drug delivery, which can be combined with femoral artery ligation in common peripheral arterial disease models.
This study was performed with permission of the State of Saxony and Saxony-Anhalt, Regierungspraesidium Dresden/Halle, according to Section 8 of the German Law for animal protection (24D-9168.11-1/2008-24).
1 Cell Isolation
1.1 Preparation of Femur and Tibia
1.2 Harvesting of Bone Marrow
1.3 Cultivation
1.4 Harvesting of Cells
Note: These steps should be performed on ice. Proceed with either 1.4.1 or 1.4.2 accordingly.
1.5 FACS-Analysis (Optional)
Note: It is possible to deplete the cell suspension of CD117+ stem- and progenitor cells by the use of MACS. Use manufacturer protocols for this procedure.
2. Tail Vein Injection
2.1 Preparation
2.2 Restraining
2.3 Injection
The cell solution extracted from the murine bone marrow consists of various cell types. The major cell types are lymphocytes, granulocytes and monocytes. Cell types can be estimated by size and granularity, which is shown in Figure 1 for both native suspensions and cells harvested after 5 days of differentiation. Note the shifting cellular composition during cultivation. However, accurate classification of populations must rely on distinctive expression of cellular markers.
The most important marker used to identify cells of the MPS-System is CD115, which functions as the M-CSF receptor and is specifically expressed on monocyte progenitors, monocytes and macrophages. Therefore, it might not be used to identify distinctive MPS-subsets, but can reliably estimate the absolute amount of cells driven into the monocyte/macrophage differentiation. See Figure 2 for a timeline of CD115 expression during differentiation.
The maturity marker F4/80 is useful to differentiate juvenile monocytes, mature monocytes, and macrophages. Macrophages show strong expression of F4/80 in comparison to juvenile monocyte progenitors, which are negative for the marker. Mature monocytes show intermediate expression of F4/80. A combination of CD115 and F4/80 markers therefore represents a feasible method for quantifying and monitoring cell differentiation (see Figure 3).
The combination of CD115 and F4/80 is sufficient for routine culture observation and quality control prior to application of cells. A more detailed examination of the bone-marrow-derived monocytes at day 5 of cultivation confirms their structural and functional properties in concordance to those of peripheral blood monocytes 12.
It is important to fix the mouse carefully in the restrainer, avoiding tension on the tail. Restrict freedom of movement as much as possible without inhibiting breathing to facilitate the injection.
Figure 1. Left panel: Composition of cell types at day 1 in culture. Cell types include lymphocytes, monocytes and granulocytes. Right panel: Note the shifting cellular composition during cultivation. Cell population includes monocytes and macrophages. Please click here to view a larger version of this figure.
Figure 2. Timeline of CD115 expression during differentiation. Note that >95% of all cells are CD115 positive after 5 days of differentiation, indicating that the vast majority of cells are either monocytes or macrophages. Classification can be based on cell size and granularity, but specific cellular markers are more reliable. Please click here to view a larger version of this figure.
Figure 3. Increasing expression of monocyte/macrophage maturity marker F4/80. Day 5: Note the appearance of a population with intermediate F4/80 expression, which is consistent with monocyte phenotype. Day 7: Note the right-shift of F4/80 expression, consistent with macrophage maturation. Please click here to view a larger version of this figure.
Figure 4. Mouse fixed in restrainer for tail vein injection. After carefully restraining the mouse, rotate the tail 90 degrees until the veins are visible on the dorsal side. Please click here to view a larger version of this figure.
Figure 5. Schematic cross section of the mouse tail. The picture illustrates the location of vessels within the mouse tail. The arteries (red) are located on the ventral and dorsal side, and the veins are on the lateral side of the tail. Please click here to view a larger version of this figure.
We describe a simple and cost-effective method to isolate large amounts of murine monocytes from bone marrow. In comparison to other protocols using peripheral blood, which obtain monocyte yields5 of 1.4 x106, we are able to obtain higher yields of 11 x 106 ± 3 x 106 monocytes from a single donor mouse.
When considering challenges with this method, it is important to mention the potential for contamination when working under non-sterile conditions. If rinsing and the following washing steps are not followed properly, contamination by bacteria and fungi is likely. Additionally, bone marrow consists of heterogeneous cell suspensions, including granulocytes, lymphocytes and erythroid cells. Normally these cells vanish between day 2 and 3 of cultivation due to the lack of growth factors. After growth factor driven differentiation, macrophages are the major source of contamination. To keep the number of macrophages low and to minimize the differentiation of monocytes to macrophages, the use of ultra-low attachment plates and the washing steps mentioned above are critical.
It is difficult to identify a marker that is exclusively monocyte-specific. Interference between markers necessitates the use of more than one marker, and there is variability in the granularity and size of cells in analyzing cell suspensions. The markers and descriptions shown in Figures 1-3 are good alternatives for representative cell types in culture. It can be difficult to distinguish the various cell types, especially after day 5. Therefore it is critical to use other markers like CD115 and F4/80.
Considering the expansion of bone marrow cells under adhesion-free conditions, macrophage differentiation can be prolonged and undifferentiated monocytes can accumulate. Macrophage differentiation indicates contamination; however, due to their adhesive nature even on ultra-low-attachment cultivation surfaces, they can be easily discarded while only harvesting non-adhesive cells from culture. In previous experiments1,3, contamination by macrophages has not led to serious clinical side effects. Histological workup of organs and muscles of mice after cell transplantation showed that injected macrophages assimilated in organs like spleen, liver or lung. The assimilation of macrophages in these organs demonstrated no observable clinical effects in mice. The molecular mechanism triggered by these macrophages can be interesting questions for further investigations.
Monocytes as well as macrophages affect arteriogenesis in peripheral arterial disease, especially when applied systemically. Clinical side effects such as embolism or massive systemic inflammation could not be observed even after injection of more than 2.5 million monocytes, but these cells can trigger inflammation and potentially cause severe systemic effects. In human trials, these effects are likely to have clinical significance. The triggering of arteriogenesis can affect tumor growth or diabetic retinopathy, and such possible systemic effects of injected cell solutions should be explored in future studies.
Previous publications9 describe differences between the characteristics of peripheral blood- and bone marrow-derived monocytes, which explain why the properties of monocytes from bone marrow can differ from those isolated from peripheral blood cells.
The method of isolation is of clinical interest as well. Drawing blood instead of extracting human bone marrow is more practical in the context of clinical medicine. It is important to look after the welfare of the animals and to apply analgesia if needed. For intravenous injections, it is critical to practice handling both the animal and the syringe at the same time. If a single animal is undergoing multiple injections, the quality of the veins and the skin of the tail suffer.
Despite these disadvantages, this method is very useful to study the behavior and characteristics of monocytes. Experiments in the field of atherosclerosis, immunology or inflammation can benefit from this method. Only 30 min are required from the extraction of bone marrow to the seeding of cells on 6-well ultra-low-attachment surface plates. Ethical concerns are minimized, because the high yield of this protocol minimizes the number of animals required as cell donors. This new method will be helpful for many studies involving monocytes.
We have been focused on therapeutic augmentation of collateral vessel growth via transplantation of monocytes. The multifactorial nature of this process may explain why single factor approaches for augmentation of arteriogenesis have generated mixed results13,14 . This has led to the investigation of cell-based therapies. Autologous bone marrow-derived stem and progenitor cells have been identified as potential cells for transplantation, but only moderate clinical benefits have been reported15. Besides research on dosage, isolation methods, and administration routes, further research is still needed to determine the optimal cell type. A disadvantage of autologous cell transplantation could be their inability to activate the innate and/or adaptive immune response, and both are critical for arteriogenesis. Increasing local inflammation may represent the best stimulus for arteriogenesis16.
Intravenous injection of monocytes is a common method for cell transplantation within mouse models if systemic drug delivery is desired. Because of systemic effects, side effects can occur as well. Ensure that the vein is targeted for injection. It is common to confuse arteries and veins, especially when injecting heavily pigmented mice. Arterial injection can cause emboli, which lead to systemic issues in circulation.
The authors have nothing to disclose.
This work was supported by the DFG (Deutsche Forschungsgemeinschaft, German Research Foundation) SFB 854 (Sonderforschungsbereich, collaborative research center).
Thanks to Hans-Holger Gärtner, Audiovisuelles Medienzentrum, Otto-von-Guericke University Magdeburg, Magdeburg, Germany, for technical support.
6-well-ultra-low-attachment plate | Corning Incorporated, NY, USA | 6-well-ultra-low-attachment plate, with cap, sterile | |
8- 12 week old, male, balb/c mice | Charles River, Sulzfeld, Germany | ||
96-well-plate | Greiner bio one GmbH, Frickenhausen, Germany | ||
Blue dead cell stain | Life technologies GmbH, Darmstadt, Germany | ||
Bovine serum albumine | GE Healthcare, Freiburg, Germany | Fraction V, pH 7,0 | |
Canules | B. Braun, Melsungen AG, Melsungen, Germany | 28G, 30G | |
CD115 | eBioscience, San Diego, USA | 12-1152 | |
CD11b | eBioscience, San Diego, USA | 53-0112 | |
Cell culture dish | Greiner Bio-One GmbH, Frickenhausen, Germany | With cap, steril | |
Centrifuge | Beckman Coulter GmbH, Krefeld, Germany | Allegra® X-15R centrifuge | |
Depilatory cream | Veet, Mannheim, Germany | ||
Disinfection agent | Schülke&Mayr GmbH, Norderstedt, Germany | Kodan Tinktur forte | |
Disposable scalpel No.10 | Feather safety razor Co.Ltd, Osaka, Japan | ||
EDTA | Sigma Aldrich, Hamburg, Germany | ||
Ethanol 96% | Otto Fischar GmbH und Co KG, Saarbrücken, Germany | ||
Extraction unit Pipetus | Hirschmann Laborgeräte GmbH & Co.KG, Eberstadt, Germany | ||
F4/80 | AbD Serotec, Düsseldorf, Germany | MCA497APC | |
FACS buffer | Manufactured by our group with single components | PBS, 0,5% BSA, 0,1% NaN3 | |
FACS device | Becton, Dickinson and Company, Franklyn Lakes, New Jersey, USA | BD FACS Canto II | |
FACS tubes | Becton, Dickinson and Company, Franklyn Lakes, New Jersey, USA | ||
Falcon® pipette | Becton Dickenson Labware, NY, USA | ||
Fetal calf serum | Sigma Aldrich, Hamburg, Germany | ||
Fine forceps | Rubis, Stabio, Switzerland | ||
Gloves | Rösner-Matby Meditrade GmbH, Kiefersfelden, Germany | ||
Gr1 | eBioscience, San Diego, USA | 53-5931 | |
Heating plate | Labotect GmbH, Göttingen, Germany | Hot Plate 062 | |
Incubator | Ewald Innovationstechnik GmbH, Bad Nenndorf, Germany | Incu safe | |
Isofluran | Baxter Deutschland GmbH, Unterschleißheim, Germany | ||
Light microscope | Carl Zeiss SMT GmbH, Oberkochen, Germany | Axiovert 40 °C | |
Macrophage-Colony Stimulating Factor | Sigma Aldrich, Hamburg, Germany | SRP3110 | |
Mechanical shaker | IKA, Staufen, Germany | ms2 minishaker | |
Medium 199 | PAA Laboratories GmbH, Pasching, Austria | Warm in 37 °C water bath before use | |
Micro test tubes | Eppendorf AG, Hamburg, Germany | ||
Microbiological work bench | Thermo Electron, LED GmbH, Langenselbold, Germany | Hera safe | |
Monocyte wash buffer | Manufactured by our group with single components | PBS, 0,5% BSA, 2mM EDTA | |
Mouse restrainer | Various | ||
NaCl | Berlin Chemie AG, Berlin, Germany | ||
NaN3 (sodium acide) | Sigma Aldrich, Hamburg, Germany | ||
Neubauer counting chamber | Paul Marienfeld GmbH und Co.KG, Lauda-Königshofen, Germany | ||
Nylon cellsieve | Becton, Dickinson and Company, Franklyn Lakes, New Jersey, USA | Cell strainer, 70 µm mesh size | |
Penicillin/Streptomycin | Sigma Aldrich, Hamburg, Germany | ||
Phosphate buffered saline | Life technologies GmbH, Darmstadt, Germany | pH 7.4, sterile | |
Pipettes | Eppendorf AG, Hamburg, Germany | 10µL/100µL/200µL/1000µL | |
Pipetting heads | Eppendorf AG, Hamburg, Germany | ||
Serological pipette | Greiner Bio-One GmbH, Frickenhausen, Germany | Cellstar 5 ml, 10 ml | |
Suction unit | Integra bioscience, Fernwald, Germany | Vacusafe comfort | |
Surgical scissors | Word Precision Instruments, Inc., Sarasota, USA | ||
Syringe | B. Braun, Melsungen AG, Melsungen, Germany | 1mL Omnifix® -F insuline syringe | |
Tubes with cap | Greiner bio one GmbH, Frickenhausen, Germany | 15mL/50mL Cellstar tubes | |
Warm water bath | Julabo Labortechnik GmbH, Seelbach, Germany | Julabo SW22 |