Protocols for efficient preparation of homogenous samples of spider mites, infestation of experimental plants, and assessment of plant damage, as required for studies of plant-pest interaction were developed.
The two-spotted spider mite, Tetranychus urticae, is a ubiquitous polyphagous arthropod herbivore that feeds on a remarkably broad array of species, with more than 150 of economic value. It is a major pest of greenhouse crops, especially in Solanaceae and Cucurbitaceae (e.g., tomatoes, eggplants, peppers, cucumbers, zucchini) and greenhouse ornamentals (e.g., roses, chrysanthemum, carnations), annual field crops (such as maize, cotton, soybean, and sugar beet), and in perennial cultures (alfalfa, strawberries, grapes, citruses, and plums)1,2. In addition to the extreme polyphagy that makes it an important agricultural pest, T. urticae has a tendency to develop resistance to a wide array of insecticides and acaricides that are used for its control3-7.
T. urticae is an excellent experimental organism, as it has a rapid life cycle (7 days at 27 °C) and can be easily maintained at high density in the laboratory. Methods to assay gene expression (including in situ hybridization and antibody staining) and to inactivate expression of spider mite endogenous genes using RNA interference have been developed8-10. Recently, the whole genome sequence of T. urticae has been reported, creating an opportunity to develop this pest herbivore as a model organism with equivalent genomic resources that already exist in some of its host plants (Arabidopsis thaliana and the tomato Solanum lycopersicum)11. Together, these model organisms could provide insights into molecular bases of plant-pest interactions.
Here, an efficient method for quick and easy collection of a large number of adult female mites, their application on an experimental plant host, and the assessment of the plant damage due to spider mite feeding are described. The presented protocol enables fast and efficient collection of hundreds of individuals at any developmental stage (eggs, larvae, nymphs, adult males, and females) that can be used for subsequent experimental application.
Plant-pest interaction is a topic of great scientific and economic importance. It was historically studied using both crop plants (such as tomato) and the model plant, A. thaliana. In both cases, susceptibility of plant to herbivore could be measured either directly through assessment of plant phenotype after herbivore attack or indirectly through the assessment of pest performance.
Direct measurements of plant susceptibility were utilized previously for a number of insect pest species using a range of methods. For example, herbivory of lepidopteran larvae is measured as an estimation of the portion of plant tissue consumed by either Plutella xylostella (diamondback moth) or Trichoplusia ni (cabbage looper) by the naked eye with the help of a grid12. Also, there are methods that utilize digital imaging of leaf damage with subsequent quantitative image analysis. Such methods were used in studies of A. thaliana interaction with Frankliniella occidentalis (western flower thrips)13, Scaptomyza flava (leaf-mining drosophila)14, and T. ni15.
Indirect measurements of plant susceptibility are widely used in studies of plant-pest interaction. For example, susceptibility of A. thaliana to peach aphid Myzus persicae herbivory is typically assessed through analysis of pest fecundity and description of the gross morphology of a plant after interaction16,17. Another typical indirect indicator of A. thaliana susceptibility to a pest is a dry or wet weight assessment of the herbivore. This parameter is commonly used to characterize herbivory of lepidoterans, such as Pieris rapae (small white), P. xylostella, or T. ni at their larval or pupal stages15,17.
Spider mites are cell-content feeders. Mite-induced damage is recognized as a collection of chlorotic spots that range in color from white to pale green. The susceptibility of a plant host to spider mite herbivory was previously assessed either indirectly through the analysis of spider mite performance days post-infestation18,19, or directly using gross morphology of plants weeks post-infestation18 or using a digital imaging of leaves exposed to mites for days with subsequent automated image analysis19. These methods were being developed and used for studies of interactions between tomato plants and T. urticae, and typically used small numbers of spider mites (5-15 per treatment) that were collected from the mixed mite population and were placed on the leaf surface using a soft bristle brush. However, these methods are not suitable for studies where greater numbers of mites need to be applied. In addition, while direct processing of leaf images in image analysis software such as Adobe Photoshop (San Jose, CA) or ImageJ20 can be used for the analysis of tomato damage, these protocols need modification in order to be applied to leaves that have greater reflectivity of surface or are lightly colored and have highly visible trichomes (e.g., A. thaliana) that interfere with automated selection of chlorotic spots that mark plant damage. Furthermore, the developmental stage of spider mites that can be readily utilized with the previous methods is limited to the most prevalent and easily identifiable adult females and precludes utilization of other developmental stages.
The first critical step toward high-throughput analysis of plant-spider mite interaction is to establish reproducible, simple and robust protocols to challenge plants with spider mites and reliably assess interaction outcomes.
In this video, an efficient method for quick and easy collection of a large number of adult female mites, their application on an experimental plant host, and the assessment of the plant damage due to spider mite feeding are described. The presented protocol enables fast and efficient collection of hundreds of individuals at any developmental stage (eggs, larvae, nymphs, adult males, and females) that can be used for subsequent experimental application. In addition, these protocols can be applied to any mite host plant, but are specifically demonstrated in the case of A. thaliana.
1. Maintenance of the Spider Mite Population
NOTE: Spider mites are reared on California red kidney beans (Phaseolus vulgaris).
2. Collecting Adult Female Mites
3. Plant Infestation with Mites
NOTE: Once adult female mites have recovered, they can be used for plant infestation. There are 2 methods used to infest experimental plants with adult female mites: a) using a fine brush (protocol section 3.1) and b) using a pump or vacuum line (protocol section 3.2).
4. Recording and Assessing Plant Damage
Using 20 to 30 infested bean plants, one can collect around 2,000 adult female mites using sieves. The time required to infest 10 plants with 20 mites per plant is approximately 15 min if using a brush to transfer mites. Combinations of collection and application methods are shown in Figure 2.
This protocol generates reproducible results of plant damage, demonstrating that collected mites are of similar physiological state and suitable for plant-spider mite interaction studies (Figure 3A). To assess protocol reproducibility, adult female mites were collected using the washing method where 20 mites were placed on rosette leaves of 3 week old A. thaliana plants (accession Col-0) with a wet brush. Treated plants were scanned 4 days postinfestation and area of damage was quantified using the techniques described above. Comparison of repeated experiment results was done using ANOVA.
As an example of experimental application, we assessed natural variation in susceptibility to spider mite herbivory across 3 A. thaliana accessions by application of 20 female spider mites per plant using a wet brush and recording damage 4 days post infestation. Typical appearance of damage in scanned images is shown in Figure 3B. Afterward, quantification of damage data can be presented as a bar graph or a boxplot and analyzed by the statistical method of choice (Figure 3C). In this example, ANOVA followed by the Tukey HSD test were used for data analysis.
Figure 1. Experimental set up for the isolation of adult female mites. (A) Set of sieves to allow for separation of different spider mite developmental stages. (a. 0.5 mm opening size – removes debris from mite suspension. b. 0.3 mm – collects adult female mites. c. 0.2 mm – collects young females, males, and nymphs. d. 0.16 mm – collects larvae and nymphs. e. 0.1 mm – collects eggs.) (B) Setup used to allow mites to recover without escaping after washing and filtering. (C) Setup used to collect mites using pump. (D) Sieve with moving adult female mites ready to be collected.
Figure 2. Possible strategies to isolate adult female mites, according to the number of mites to apply. If the experimental design requires the use of a high number of adult female spider mites, the most efficient approach is to use the vacuum pump collection method directly from bean leaves. If an experiment requires the use of a developmental stage other than adult females or a small number of individuals need to be carefully placed on younger plants, it is recommended to perform collection and fractionation of spider mite developmental stages with the washing approach using sieves followed by infestation with a brush.
Figure 3. Representative results. (A) Reproducibility of experimental results. Damage area measured on 3 week old A. thaliana plants, accession Col-0, 4 days after application of 20 female spider mites. Comparison of repeated experiment results was done using ANOVA (n = 6, F = 0.621, P = 0.735). (B and C) Natural variation in susceptibility to spider mite herbivory across 3 A. thaliana accessions: Col-0, Ler-0, and Ws2. (B) Appearance of plants after spider mite herbivory. Red arrows point toward typical damaged areas. (C) Differences in susceptibility to spider mite herbivory as assessed by the area of damage. Susceptibility to spider mite herbivory significantly varies across accessions (ANOVA, n = 6, F = 13.4, P = 0.0004). Letters indicate significant differences between genotypes at P < 0.05 (Tukey HSD test). Graphed values are mean ± standard error of the mean.
This video demonstrates protocols used to isolate and to infest plants with large numbers of adult female mites. Although we presented this protocol using A. thaliana, it can be used for any plant-spider mite interaction system and is currently being successfully applied also on tomato and grapevine (Vitis vinifera) plants. The protocol yields reproducible results, indicating that collected mites are of comparable physiological state (Figure 3).
While these protocols are simple to perform, several critical steps require special attention as they will affect mite recovery. Washing mites from leaves must be done on up to three bean plants simultaneously and has to be completed within 10 min using water at RT. In addition, mites have to be spread on a sieve for rapid drying. If mite recovery is unsatisfactory, it is important to check whether the recommended amount of Tween 20 detergent was used and if the detergent was fully removed during the rinsing step.
There are two major limitations to the protocol presented: a) mite collection by pump works well for collections of more than 30 mites but collection of a smaller number of mites requires use of a brush and is relatively slow; however, collecting and concentrating adult mites through the washing method greatly facilitates their application; b) damage analysis through scoring the surface of chlorotic spots can be a time- and effort-consuming step; future effort should lay in identifying marker genes that can be used as a measure of mite feeding.
Compared to previously published methodologies, the presented method of spider mite collection offers an advantage of collecting large numbers of viable individuals and efficient separation of developmental stages in one step. In addition, assessment of plant damage phenotype in plant-pest interaction through visual inspection or digital image analysis is typically the first step of a complex analysis that involves some form of molecular read-out (such as gene expression analysis or metabolite profiling). Current protocols are suitable for the application of a few mites and collection of material days post-infestation that are valuable for the analysis of the long-term interactions between plant and pest; however, this protocol enables one to apply hundreds of mites simultaneously to effectively capture plant responses that occur during a shorter period of time (hr) and at the feeding site.
In summary, methods for applying adult female mites on host plants and assessment of plant damage have been described. These protocols are essential for experiments aimed at understanding the genetic and molecular basis of the interaction between plants and the two-spotted spider mite.
The authors have nothing to disclose.
This project was funded by the Government of Canada through Genome Canada and the Ontario Genomics Institute (OGI-046), and Ontario Research Fund–Global Leadership in Genomics and Life Sciences GL2-01-035 (to M.G. and V.G.). T.V.L. is a postdoctoral fellow of the Fund for Scientific Research Flanders (FWO).
Plant material: | |||
California red kidney bean | Stokes, Thorold, ON, Canada | NA | Two week old, well infested with spider mites two or three days before use. Other cultivars of Phaseolus vulgaris can be used. |
Chemicals: | |||
Tween 20 | Sigma-Aldrich | P9416 | 1% stock solution is prepared to simplify aliquoting |
Tap water | Any supplier | NA | At room temperature, heat- and cold-shock affect mite survival rate and peformance |
Other materials and equipment: | |||
Plastic tray | Any supplier | NA | – |
Set of scissors | Any supplier | NA | – |
2 L beakers | Any supplier | NA | – |
Paper towels | Any supplier | NA | – |
Sets of sieves | Manufactured in house | NA | Detailed instructions are available |
Thin brush | Any supplier | NA | – |
Pipettes | Any supplier | NA | – |
Pipette tips | Any supplier | NA | 0.2 and 1 mL |
1.5 mL centrifuge tubes | Any supplier | NA | – |
Air pump | Any supplier | NA | Aquarium type pump with inverted air flow. Vacuum line can be used. Required pressure drop is approx. 2-4 psi |
Stereoscope | Any supplier | NA | – |
Scanner | Epson | V30 | Any flatbed scanner allowing necessary degree of control over scan quality. We use Epson V30 for our experiments. |
Computer | Any supplier | NA | Windows or OS X PC which is compatible with scanner hardware and Adobe Photoshop software. |
Adobe Photoshop software | Adobe Systems Inc., San Jose, CA, USA | various | Any version with Histogram tool included. |