Olfactory receptor activation patterns encode odor identity, but the lack of published data identifying odorant ligands for mammalian olfactory receptors hinders the development of a comprehensive model of odor coding. This protocol describes a method to facilitate high-throughput identification of olfactory receptor ligands and quantification of receptor activation.
Odorants create unique and overlapping patterns of olfactory receptor activation, allowing a family of approximately 1,000 murine and 400 human receptors to recognize thousands of odorants. Odorant ligands have been published for fewer than 6% of human receptors1-11. This lack of data is due in part to difficulties functionally expressing these receptors in heterologous systems. Here, we describe a method for expressing the majority of the olfactory receptor family in Hana3A cells, followed by high-throughput assessment of olfactory receptor activation using a luciferase reporter assay. This assay can be used to (1) screen panels of odorants against panels of olfactory receptors; (2) confirm odorant/receptor interaction via dose response curves; and (3) compare receptor activation levels among receptor variants. In our sample data, 328 olfactory receptors were screened against 26 odorants. Odorant/receptor pairs with varying response scores were selected and tested in dose response. These data indicate that a screen is an effective method to enrich for odorant/receptor pairs that will pass a dose response experiment, i.e. receptors that have a bona fide response to an odorant. Therefore, this high-throughput luciferase assay is an effective method to characterize olfactory receptors—an essential step toward a model of odor coding in the mammalian olfactory system.
The mammalian olfactory system has the ability to respond to a vast number of odorous stimuli, allowing for the detection and discrimination of thousands of odorants. Olfactory receptors (ORs) are the molecular sensors expressed by the olfactory sensory neurons in the olfactory epithelium12. Mammalian odor recognition occurs through differential activation of ORs by odorants, and the OR gene family is extensive, with roughly 1,000 murine and 400 human receptors12-16. Previous functional analyses of ORs in olfactory neurons and in heterologous cells have shown that different odorants are recognized by unique, but overlapping ensembles of ORs10,17-20. Matching ligands to ORs is critical for understanding the olfactory code and essential for building viable models of olfaction. Due to difficulties expressing ORs in heterologous systems as well as the large number of both odorants and ORs, this data has been largely absent from the field; indeed, fewer than 6% of human ORs have a published ligand1-11. This protocol describes the use of a luciferase assay to characterize odorant/OR interactions. This assay enables the high-throughput characterization of ORs, a task that is essential to understanding odorant/OR interactions as well as developing a model of odor coding.
High-throughput studies of ORs face three major challenges. First, ORs expressed in heterologous cells were retained in the ER and subsequently degraded in the proteasome21,22, preventing the ORs from interacting with odorants in the assay system23-25. This problem was addressed by the discovery of accessory proteins that facilitate stable cell-surface expression of a broad range of ORs19,26,27. Receptor-transporter-proteins 1 and 2 (RTP1 and 2) promote OR cell-surface expression and activation in response to odorant stimulation19. Based on this work, HEK293T cells were modified to stably express RTP1 long (RTP1L) and RTP2, receptor expression-enhancing protein 1, and Gαolf, resulting in the Hana3A cell line19,27. In addition, the type 3 muscarinic acetylcholine receptor (M3-R) interacts with ORs at the cell surface and enhances activation in response to odorants26. Co-transfection of an OR with RTP1S and M3-R into Hana3A cells results in the robust, consistent, and functional expression of a broad range of ORs at the cell surface27. Second, mammalian OR repertoires are quite large. In humans, for example, the OR repertoire is an order of magnitude more numerous than the gustatory receptor repertoire, and 2 orders of magnitude more numerous than the visual receptor repertoire. Although cloning a single OR is a relatively straightforward protocol, significant up-front effort is required to generate a comprehensive library. Third, although we know that in vision, wavelength translates into color and in audition frequency translates into pitch, the organization of odors is poorly understood, making it difficult for researchers to interpolate from a representative sample of odorants. Although some progress has been made on this front10,28, the map of the olfactory landscape remains incomplete. Screening tens of thousands of molecules against hundreds of ORs is a daunting task; high-throughput screens in this domain require carefully defined campaigns. The major remaining challenges are those of logistics and cost rather than problems inherent to the technique. Although heterologous screening has not been widely used to identify ligands by academic groups, a private company has used the same technique to identify ligands for 100 human ORs 29. Unfortunately, these data remain proprietary.
The high-throughput luciferase assay outlined here has several advantages over alternative methods used to assess OR activation. Although the responses of native olfactory sensory neurons have been measured using electrophysiology and calcium imaging, these techniques have difficulty teasing apart which OR leads to a neuron's response due to the overlap in response properties for olfactory neurons. Although knocking-in a GFP-labeled receptor type30,31, delivering specific receptors via adenovirus to murine olfactory neurons32,33, or performing RT-PCR after recordings17,24,33 can link recordings to single receptor types, these methods are low-throughput and not suitable for large-scale screens. Heterologous screening systems are more scalable, and two major forms are found in the literature: cAMP pathway reporters and inositol triphosphate (IP3) pathway reporters. Upon odor stimulation, ORs activate a Gαolf transduction signaling cascade that results in the production of cyclic AMP (cAMP)12. By co-transfecting a firefly luciferase reporter gene under the control of a cAMP response element (CRE), luciferase production can be measured as a function of odor response, allowing for the quantification of OR activation. OR activation can also be linked to the IP3 pathway by co-expressing G-proteins such as Gα15/16 or a Gα15-olf chimera24,25,34. We have chosen the assay presented here based on three factors: (1) the co-expression of RTP1 with Rho-tagged olfactory receptors improves the expression of olfactory receptors at the cell surface19,27; (2) use of a cAMP-responsive reporter gene allows for the measurement of OR activation through the canonical second messenger pathway; and (3) the assay is well-suited to high-throughput screens.
This high-throughput luciferase assay is applicable to a variety of studies valuable to the field of olfaction. First, a large number of ORs can be screened against a single odorant in order to determine the receptor activation pattern for a specific odorant. This type of study identified OR7D4 as the OR responsible for responding to the steroid odorant androstenone8. Conversely, one OR can be screened against a panel of odorants in order to determine the receptor response profile10. When candidate olfactory odorant/OR pairs are identified via these screens, interaction can be confirmed by conducting a dose response experiment examining the response of the OR to increasing concentrations of odorant. Dose response curves can also assess how genetic variation in an OR affects in vitro odorant response8,9,11,35, and these studies can be extended to interspecific OR variation, allowing for the examination of receptor evolution across species and causal mutations in evolution36,37, Finally, this assay can be used to screen for odor antagonists that are able to antagonize OR response to a particular odorant for a known odorant/receptor pair38,39. In summary, this high-throughput luciferase assay is applicable to a range of studies that will help characterize OR activation patterns and provide a better understanding of odor coding in the olfactory system.
1. Culture of Hana3A Cells
2. Plating Cells for Transfection
3. Transfection of Olfactory Receptors
Plasmid mix | ||
per well | per 96-well plate | |
MEM | — | 500 µl |
RTP1S-pCI | 5 ng | 480 ng |
M3-R-pCI | 2.5 ng | 240 ng |
pCRE-luc | 10 ng | 960 ng |
pSV40-RL | 5 ng | 480 ng |
Complex | ||
per well | per well + 10% | |
Plasmid mix | 4.2 µl | 4.58 µl |
Rho-OR-pCI | 0.05 ng | 0.06 ng |
Lipid transfection mix | 4.2 µl | 4.58 µl |
M10 | 41.7 µl | 45.83 µl |
4. Odor Stimulation
5. Measuring OR Activity via Luciferase Assay
6. Data Analysis
A primary screen tested 328 ORs against 26 odors at a concentration of 100 µM. This odor concentration has been demonstrated to effectively activate a large proportion of ORs with known ligands10. First, normalized luciferase activity was calculated by dividing the firefly luciferase reading by the Renilla luciferase reading. Next, baselined values were calculated by subtracting the normalized luciferase readings for the no odor control from the normalized luciferase readings for each well (Figure 1). Dose response curves were performed on 48 odorant/OR pairs randomly distributed across the range of baselined values, as indicated by colored bars in Figure 1. ORs were treated with 7 concentrations of odorant spanning 1 nM to 1 mM, and the resulting responses were fit to a sigmoidal curve using nonlinear regression. An odorant/OR was considered an agonist if it met three criteria: (1) the standard error of the logEC50 was less than 1 log unit; (2) the 95% confidence intervals for the top and bottom parameters of the curve did not overlap; and (3) the extra sums-of-squares test confirmed that the odorant activated the OR-containing cells significantly more than the control cells, which were transfected with an empty vector. Dose response results are summarized in Table 3.
These data were then used to determine how well assay measurements in a primary screen predict results from the dose response curve. Blue bars in Figure 1 correspond to pairs that were classified as agonists in a full dose response experiment, while red bars did not meet our three criteria outlined above. Values from the primary screen predicted results from the full dose response experiment (area under the receiver operating characteristic curve (AUC) = 0.68, p < 0.01, Mann-Whitney U test), indicating that our primary screen is a useful method to enrich for odorant/OR pairs that will be classified as agonists in a full dose response experiment (Figure 2).
Figure 1. Frequency of baselined luciferase values for a screen with a panel of olfactory receptors and odorants. Histogram of the frequency (Count) of baselined luciferase values calculated for each odorant/OR pair in the primary screen. As odorant/receptor activation pairs are sparse, the majority of the values are centered at zero and the large central distribution estimates the noise distribution for this assay. Colored bars indicate odorant/receptor pairs chosen for dose response analysis; blue bars are pairs that were classified as agonists based on the full dose response, and red bars are pairs that were not classified as agonists. Click here to view larger image.
Figure 2. ROC curve for the odorant/receptor screen. 48 odorant/receptor pairs were classified as being agonists or as not being agonists. True positive rate (sensitivity) was then plotted against the false positive rate (1-specificity) using the R statistical package40. The area under the curve (AUC) is 0.68, indicating that odorant/receptor pairs with higher luciferase screen values are more likely to pass dose response than those with lower values. Click here to view larger image.
Baselined Value | Dose Response |
0.051793067 | fail |
0.006376956 | fail |
0.331936398 | pass |
0.591006519 | pass |
0.049093369 | pass |
0.396788976 | pass |
-0.013655743 | pass |
0.011080217 | pass |
0.004203349 | fail |
0.003975049 | fail |
-0.077935718 | pass |
-0.084488317 | pass |
0.030236078 | fail |
-0.042963576 | fail |
0.031466406 | fail |
0.025897747 | fail |
-0.030434651 | fail |
-0.004122795 | fail |
-0.010075533 | fail |
0.028883452 | fail |
0.019402373 | fail |
0.047508749 | fail |
0.00255344 | fail |
0.017221449 | fail |
0.340216655 | pass |
-0.026912181 | fail |
0.037140428 | fail |
0.467763017 | pass |
0.097665337 | fail |
0.080657267 | pass |
0.172819211 | pass |
0.05568393 | pass |
-0.106721064 | pass |
0.136614849 | pass |
0.457839849 | fail |
0.211751741 | fail |
0.1581464 | pass |
-0.62099155 | pass |
-0.066949491 | pass |
-0.78712035 | pass |
0.752503007 | pass |
1.433407558 | pass |
0.475431098 | pass |
1.457936815 | pass |
0.048652537 | fail |
0.027196782 | fail |
0.129599842 | fail |
-0.069781272 | fail |
0.016450039 | fail |
-0.025639207 | fail |
0.158152141 | fail |
-0.032570055 | fail |
0.140139926 | fail |
-0.052030276 | fail |
0.657140133 | pass |
1.040410297 | pass |
0.164647156 | pass |
0.399588712 | pass |
0.188094387 | pass |
0.039371424 | pass |
0.016784352 | pass |
0.229959571 | pass |
0.238381997 | fail |
0.074118909 | fail |
0.423901128 | pass |
0.152621022 | pass |
-0.109048046 | pass |
0.075301806 | pass |
0.395233972 | pass |
0.261892958 | pass |
0.156693306 | fail |
2.163418147 | pass |
3.649862104 | pass |
0.025716169 | pass |
-0.033258008 | pass |
-0.026984127 | fail |
-0.338441868 | pass |
0.37398618 | pass |
Table 3. Olfactory receptor/odor pairs tested in dose response. Baselined luciferase values and dose response results (pass or fail) for 48 OR/odor pairs chosen from the screen. For 30 pairs tested in the screen twice, both baselined luciferase values are included.
Odorant identity is encoded by olfactory receptor activation patterns, but receptor activation patterns, including which receptors are activated and to what degree, are known for fewer than 6% of human olfactory receptors1-11. Efforts to characterize olfactory receptors have been limited by their labor-intensive methods or applicability to only a subset of the olfactory receptor family17,23,24,33,34. The Hana3A heterologous expression system supports the robust expression of the majority of tested olfactory receptors, and can be used in conjunction with a cAMP-responsive luciferase reporter system to monitor olfactory receptor activation19,26,27. Performance of this assay in a 96-well format supports a number of high-throughput experimental designs, including screens to determine likely candidates for odorant/olfactory receptor pairs and dose-response curves to confirm interactions and assess how receptor activation levels are affected by intra- and inter-specific variations. Odorant/receptor pairs with higher activity values in a screen are more likely to demonstrate a significant dose response. These data suggest that this screening method is able to enrich for odorant/receptor pairs that will pass dose response, thereby facilitating the identification of odorant ligands and olfactory receptor activation patterns.
The success of this assay optimized for olfactory receptor analysis is dependent on several factors. All plasmid DNA must be prepared via an endotoxin-free protocol. Consistent olfactory receptor expression at the cell surface is critical. The Hana3A cell line stably expresses several accessory proteins that aid in OR expression, but co-transfection of RTP1S and M3-R enhances receptor expression and activation, respectively27. This combination of accessory protein expression results in the reliable expression of most olfactory receptors, allowing the comparison of OR activation among experiments and receptors. In addition, monitoring of cell confluency is important for obtaining consistent results. Assuming the cells in the original 10 cm2 dish are roughly 100% confluent, following the protocol described herein will result in reliable cell confluency throughout the experiment. Importantly, sufficient cells will be plated to obtain a measurable luciferase reading, but cells will not be over-grown, a condition which may affect receptor activation following odorant stimulation. Normalizing for constitutive renilla expression further controls not only for cell density, but also for transfection efficiency. A renilla luciferase reading more than 2.5 standard deviations below the mean may indicate cell loss. Cells should be plated uniformly to avoid dense plaques that detach more easily from the plate surface than sparser cells, and transfection and odorant solutions should be added gently to the side of the well to avoid detaching cells. Cell loss could also be due to cell death caused by odorant toxicity, a problem that may be circumvented by lowering odorant concentration, or excessive DMSO, which can be avoided by keeping DMSO concentrations below 0.5%. Finally, treating each receptor-expressing cell population with 1 µM forskolin, an adenylyl cyclase activator that causes luciferase reporter expression from the cAMP-responsive promoter, can serve as a positive control for the assay.
Although the assay described herein represents an improvement over alternative methods, including a high-throughput format and more general applicability to the mammalian olfactory receptor family, it has limitations. First, our in vitro assay lacks many components of an in vivo olfactory system, including odorant binding proteins, a mucosal layer, intracellular molecules and sniffing behaviors. Second, this method relies on a luciferase reporter system to measure olfactory receptor activation in contrast to common alternative methods that utilize calcium imaging. Recent work suggests that these two methods can produce conflicting results; indeed, a few olfactory receptors respond to a particular odorant when examined via calcium imaging but not luciferase assay41. Whether one assay type is more relevant to studies of human olfactory perception remains unclear, but both methods could be useful depending on context and receptor type. Third, while this functional expression system has successfully been used to express the majority of tested mammalian olfactory receptors, some ORs may not be amenable to expression using this system. If previously uncharacterized receptors fail to respond to an odor, it may be due to lack of expression at the cell surface rather than a lack of interaction between odorant and receptor. Receptor cell surface expression can be examined via immunofluorescence before drawing conclusions from negative assay results27,42. Finally, due to low background luciferase activity in no-odor conditions, our assay is not designed to detect inhibitory responses. To determine odor antagonists for olfactory receptors38,39, most receptors must first be stimulated with an odor in order to observe a reduction in luciferase activity.
Despite these limitations, this assay system has the ability to greatly increase data acquisition in the field of olfaction. First, the high-throughput 96-well format makes large-scale receptor and/or odor screens feasible. Second, its heterologous expression system is applicable to a variety of mammalian olfactory receptors. Third, luciferase activity can be used to measure olfactory receptor activation, which is valuable in describing the receptor activation patterns for a particular odorant. Fourth, previous results from similar in vitro assay systems predict human olfactory perception8,11,35. These characteristics are particularly important given the large size of the mammalian olfactory receptor family and our limited knowledge regarding the OR activation patterns elicited by specific odors. Broad application of this assay system optimized for olfactory receptor analysis will contribute to a more comprehensive picture of olfactory receptor/odorant interaction and the molecular basis of odor coding.
The authors have nothing to disclose.
This work was supported by R01 DC013339, R03 DC011373, and Ruth L. Kirschstein National Research Service Award T32 DC000014. A portion of the work was performed using the Monell Chemosensory Receptor Signaling Core, which is supported, in part, by funding from the NIH-NIDCD Core Grant P30 DC011735. The authors thank C. Sezille for help with data collection.
Name of Material/ Equipment | Company | Catalog Number | Comments/Description |
Hana3A cells | Avaiable from the Matsunami Laboratory upon request | ||
RTP1S-pCI | Avaiable from the Matsunami Laboratory upon request | ||
M3-R-pCI | Avaiable from the Matsunami Laboratory upon request | ||
pCRE-luc | Agilent | 219076 | LUC |
pSV40-RL | Promega | E2231 | RL |
Minimum Essential Media, Eagle | Sigma Aldrich | M4655 | MEM |
FBS | Life Technologies | 16000-044 | FBS |
PBS (without Ca2+ and Mg2+) | Cellgro | 21-040-CV | PBS |
Trypsin (0.05% Trypsin EDTA) | Life Technologies | 25300 | Trypsin |
CD293 | Life Technologies | 11913-019 | CD293 |
96 well PDL white/clear plate | BD BioCoat | 356693 | plates |
Lipid transfection reagent: Lipofectamine 2000 | Life Technologies | 11668-019 | Lipofectamine |
Firefly luciferase substrate, firefly luciferase quencher/Renilla luciferase substrate: Dual-Glo Assay | Promega | E2980 | dual glo |
Synergy S2 | BioTek | SLAD | BioTek S2 |
Microplate reader software: Gen5 Data Analysis Software | BioTek | Gen5 | Gen5 |
BIOSTACK | BioTek | BIOSTACK2WR | BioStack |
Multiflo | BioTek | MFP | MultiFlo |
300ul GripTips | Integra | 4433 | GripTips |
12.5ul GripTips | Integra | 4414 | GripTips |
300ul GripTips ViaFlo96 | Integra | 6433 | XYZ tips |
12.5ul GripTips 384 XYZ | Integra | 6403 | XYZ tips |
384ViaFlo | Integra | 6030 | 384ViaFlo |
TE buffer | Macherey Nagel | 740797.1 | |
DMSO | Sigma Aldrich | D2650-100ML | DMSO |
forskolin | Enzo Life Sciences | BML-CN100-0010 | FOR |