This paper presents the methods used for probing spatially correlated chemical, structural, and mechanical properties of the multilayered scale of Atractosteus spatula (A. spatula) using nanoindentation, Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and X-ray computed tomography (X-ray CT). The experimental results have been used to investigate the design principles of protective biological materials.
The hierarchical architecture of protective biological materials such as mineralized fish scales, gastropod shells, ram’s horn, antlers, and turtle shells provides unique design principles with potentials for guiding the design of protective materials and systems in the future. Understanding the structure-property relationships for these material systems at the microscale and nanoscale where failure initiates is essential. Currently, experimental techniques such as nanoindentation, X-ray CT, and SEM provide researchers with a way to correlate the mechanical behavior with hierarchical microstructures of these material systems1-6. However, a well-defined standard procedure for specimen preparation of mineralized biomaterials is not currently available. In this study, the methods for probing spatially correlated chemical, structural, and mechanical properties of the multilayered scale of A. spatula using nanoindentation, FTIR, SEM, with energy-dispersive X-ray (EDX) microanalysis, and X-ray CT are presented.
Researchers are investigating structural biomaterials and are trying to elucidate the design principles, which provide structural biomaterials with improved mechanical properties such as much higher toughness and strength when compared to their individual constituents. The investigations on the design principles of armored fish scales for Pagrus major7, Polypterus senagalus2,6, Arapaima gigas3, Cyprinus carpio4, and Atractosteus spatula1 have demonstrated the need to expand the application of existing experimental methods to study the structural responses and microstructural characteristics, since detailed standard procedures are not available for these types of materials and experiments.
Among the different armored fish scales discussed, A. spatula is a historically apex predator of the central US8 and is a species with highly mineralized scales. The species exchanges muscle mass for skin mass to obtain an improved predator defense system compared to the fish of comparable size mentioned previously9. According to Page and Burr10, A. spatula is the third largest freshwater fish in North America with the white sturgeon (Acipenser transmontanus) and Atlantic sturgeon (Acipenser oxyrhynchus) being larger species. The highly-mineralized fish scales of A. spatula are only recently being studied. Thompson and McCune11 suggested that the morphology of the gar scales have a three-layered composition consisting of a ganoine outer layer, a diffuse bone layer, and lamellar bone layer. Current research on the A. spatula scales have not distinguished the bone layer into diffuse or lamellar bone regions, but has just studied the bone region as a single inner layer1,12.
In this study, the procedures for investigating the microstructure, nanostructure, chemical composition, and spatial distributions of the mechanical properties of the scales of A. spatula based on results of FTIR spectroscopy, SEM, X-ray CT, and nanoindentation techniques are presented.
1. Fish Scale Sample Preparation
For this study, scales were obtained from the US Army Engineer Research and Development Center (ERDC) Environmental Laboratory at mid-length (29th caudal column) from an approximately 600 mm long gar (A. spatula). The fish scales were obtained according to the ERDC and National Institute of Health (NIH) animal care guidelines.
Figure 1. X-ray CT images of A. spatula scale depicting the short-axis transverse section examined in this study of A. spatula using nanoindentation and FTIR [A (anterior), P (posterior), D (dorsal), V (ventral)].
Figure 2. Image of a polished short-axis transverse section A. spatula scale mounted in epoxy.
2. Nanoindentation Testing
3. Spatially Resolved ATR-FTIR Spectroscopy
The use of a slide-on ATR accessory attached to an FTIR microscope is one suggested method to collect spatially resolved Fourier transform infrared (FTIR) spectra of the layers in a fish scale sample. The ATR accessory allows for collection of high quality spectra with very small (~10 μm2) spatial resolution, which is not attainable with any other FTIR technique. The same polished sample (Figure 2) prepared for nanoindentation experiments was used in these experiments.
4. X-ray Computed Tomography (CT)
5. SEM Imaging and EDX Analysis
Specimens prepared by polishing for nanoindentation and micro-/nano-structure characterization were examined using scanning electron microscopy (SEM). Low-vacuum mode was utilized to minimize dehydration of specimens and the need for application of conductive coatings. Local chemical analysis was performed on polished specimens in conjunction with SEM imaging using energy-dispersive X-ray spectroscopy (EDX). EDX analyses were performed on the same line/grid that was analyzed by nanoindentation in order to provide correlations between chemical and mechanical properties. Freshly fractured surfaces were also examined by SEM to provide better information on the morphology and orientation of biomineralized structures present in the fish scales. To improve resolution for observation of nano-scale structure on fractured surfaces, specimens were sputter coated with gold (Au) and imaged in high-vacuum mode. The following provides additional details on the procedures used.
Figure 3 depicts the average results of spatially-correlated nanoinidentation/SEM/EDX analyses conducted across the approximately 800 μm long short axis transverse cross-section. In the approximately 60 μm thick ganoine layer, the nanoindenter calculated an average modulus of 69.0 GPa and hardness of 3.3 GPa. The nanoindenter determined an average modulus of 14.3 GPa and hardness of 0.5 GPa for the approximately 740 μm thick bone layer.
EDX determined carbon, oxygen, calcium, and phosphorous, which are typically found in mineralized scales. However, the ganoine and bone layers contained quantifiable differences in chemical compositions. The observed carbon spike in the bone layer may be attributed to that region not being as highly mineralized, which results in a slight increase in carbon that also caused the observed decrease in overall brightness of the BSE image. Specifically, the ganoine layer’s mean atomic concentration ratio of Ca:P of 1.71 appeared similar to hydroxyapatite with a theoretical ratio of 1.67. The bone layer’s average Ca:P ratio decreased to 1.51 representing a decrease in the amount of mineralization from the ganoine layer.
FTIR spectra in Figure 4 for the bone layer and ganoine layer identified the main functional groups as amide, carboxylic, phosphate, and carbonyl. Specifically, FTIR confirmed the visual observation of hydroxyapatite signatures in the outer (ganoine) layer and collagen signatures in the inner (bone) layer. Peaks at 3,500-3,000 cm−1 due to NH stretching and NH bending between 1,550 and 1,500 cm−1 represent amide groups in the bone layer. Peaks in the region of wave number 1,470-1,365 cm−1 represent amide substituted alkyl groups. Additionally, a distinctive C=O stretching at 1,641 cm−1 was observed on the bone layer. Peaks from 3,000-2,500 cm−1 represent carboxylic groups. Both the bone and ganoine layers’ spectra produced a distinctive peak near 1,079.33 cm−1 indicative of stretching phosphate.
X-ray CT imagery in Figure 5 captures that the ganoine layer does not cover the bone layer where the scales overlap one another. The brighter gray ganoine layers indicate denser, harder, and stiffer phases while darker gray bone layers indicate less dense and less stiff phases. Additionally, the X-ray CT imagery aided in identifying the non-uniformity in ganoine layer thickness. In fact, clear pits are observed close to the center of the ganoine layer, which do not cover the bone layer at all.
The SEM image in Figure 6A of the fracture surface etched with H3PO4 revealed nanostructures organized in a layered pattern for the ganoine layer. This nanorod-organized structure correlates to the hydroxyapatite signatures obtained from the FTIR for the ganoine area.
Figure 6A depicts a typical lower magnification SEM micrograph of a fracture surface clearly identifying the transition between the ganoine and bone layers with the dashed line. Figure 6B portrays the higher magnification SEM images of the fracture surface after etching with H3PO4. After etching, oriented nanorods in the outer ganoine layer are clearly identifiable while a fiber-like nanostructure is observed in the bone layer.
Figure 3. Modulus and hardness data from nanoindentation spatially correlated to SEM/EDX chemical composition.
Figure 4. FTIR spectra collected from the outer (ganoine) and inner (bony) layers.
Figure 5. X-ray CT images showing pitting on the outer (ganoine) layer covering the inner (bony) layer.
Figure 6. (A) Low-magnification SEM image of typical fracture surface, (B) higher magnification images of nanorods in the outer (ganoine) and fibers in the inner (bony) layers.. Please click here to view a larger version of this figure.
From an experimental point of view, researchers need to remember that when working with naturally occurring biological materials such as mineralized fish scales, reporting the spatial location of the scale on the fish is critical since prior research has shown mechanical properties of mineralized fish scales are dependent to where the scales were located on the fish4.
Mechanical properties of mineralized biological materials has also been shown to be dependent on the hydration state of the samples4. This limits the usefulness of this technique when trying to compare fresh samples that have been properly hydrated to published results in the open literature, which use dry fossilized samples. Therefore, prolonged testing times need to be avoided to minimize the effects of dehydration on a sample’s mechanical properties during nanoindentation. Material specific pilot studies are recommended to ensure the experiment runtime is minimal enough to not change the mechanical behavior of the material. Wet cell nanoindentation would be a preferred method to keep a constant hydration state of the material if the testing equipment permits it.
The nanoindentation method used in this study, which calculated the modulus of elasticity from the unloading curve assumes the material behaves as a linear elastic isotropic material. The technique can be used with a variety of indenter tips. However, the three-sided Berkovich tip with a half angle of 65.35° was used in this study. Alternative tips such as the cube corner (half angle = 35.36°) are suitable for the procedure presented in this manuscript, but since the cube corner tip is more acute than the Berkovich tip cracks can be generated in the sample at much lower loads than with the Berkovich tip.
Polishing is an essential step to obtain a smooth and flat surface with a minimized surface roughness to not affect the nanoindentation results. The polishing steps presented in this manuscript are a suggested procedure that might need to be modified depending on the type of polisher being used. However, the critical step to ensure accurate nanoindentation data is that surface roughness is minimized, and for this particular material a 50 nm final polish was required to obtain a smooth flat surface at the indentation depths being probed.
The spacing of indents also ensures accurate nanoindentation data that is not influenced by the material deformation occurring from previous indents. The nanoindenter user manual for the equipment in this study suggested that indent spacing should be at least 20-30x the maximum penetration depth for Berkovich indenters15. For alternative materials, the required indent spacing will need to be determined based on the applied load and maximum indentation depth as discussed previously in the open literature16,17. Additionally, the hold time for this material was chosen to overcome any creep observed for the different material phases probed allowing for the nanoindenter software’s Oliver-Pharr analysis method to be used. However, as discussed by Oyen18 alternative analysis methods are available for biological materials when time-dependent material responses may not be overcome with suitable hold times.
To achieve high-resolution results from X-Ray CT, several settings must be optimized. This paper outlines a very specific set of parameters for use on a fish scale with a unique size and layered thickness. With varying sample sizes, these settings will need to be adjusted to obtain a dataset of the highest quality. The process of selecting each parameter should be clearly defined in the user manual that comes with the machine being used. Scan settings (voltage, current, exposure, filter selection) and reconstruction settings (ring artifacts, beam hardening) may need to be modified to accommodate a variety of other sample sizes and geometries.
X-ray CT provided an image of the whole-scale morphology identifying a ganoine layer covering a bony layer of material only where the scales did not overlap each other. The X-ray CT imagery also identified that the ganoine layer consisted of a non-uniform thickness across the scale, and even exhibited pits that lacked the ganoine layer altogether.
Interestingly, the nanoindentation data spatially correlated to the SEM/EDX chemical analysis identified a sharp discrete transition between the 2 layers instead of a more gradual transition observed for the mineralized fish scales of the P. senagalus (in Bruet et al. 2).
A combination of nanoindentation, FTIR, EDX, and SEM provided mechanical property, chemical analysis, and structural information to confirm the outer layer as ganoine with enamel-like morphology and chemistry. Additionally, these techniques confirmed the inner layer as a bony layer of material.
In conclusion, the methods outlined in this study identified the procedure and corresponding results to examine the mineralized fish scale of A. spatula from the bulk structure down to the nanostructure and chemical composition.
The authors have nothing to disclose.
The Authors would like to acknowledge the financial support for this work provided by the US Army ERDC Military Engineering 6.1 Basic Research Program and the ERDC Center for Directed Research Program. The Authors would also like to thank the staff and facilities of the ERDC Geotechnical and Structural Laboratory’s Concrete and Materials Branch for supporting the experimental work. Permission to publish was granted by the Director, Geotechnical & Structures Laboratory.
Epoxy resin | Buehler | 701-501512 | |
Epoxy hardener | Buehler | 703-501528 | |
Samplkups | Buheler | 20-8180 | |
SamplKlips I | Buehler | 20-4100-100S | |
High precision cut-off saw | Buehler | Isomet | |
UltraMet 2002 sonic cleaner | Buehler | B2510R-MT | |
Polisher | Buehler | 49-1750-160 | |
1200 grit (15-um) SiC paper | Struers | 40400012 | |
4000 grit (6-um) SiC paper | Struers | 40400014 | |
50-nm colloidal silica | Buehler | 40-10075 | |
Chemomet polishing pad for 50-nm suspension | Buehler | 40-7918 | |
Nanoindenter | MTS | G200 | |
FTIR continuum microscope | Thermo Nicollet | 6700 | |
X-ray Computed Tomography | Skyscan | Skyscan 1173 | |
SEM | FEI | NovaNanoSEM 630 | |
EDX | Bruker | AXS Xflash detector 4010 | |
Sputter Coater | Denton | Desk II |