This protocol describes a simple and inexpensive way to quantify the activity of cis-regulatory elements (i.e., enhancer/promoters) in living mouse retinas via explant electroporation. DNA preparation, retinal dissection, electroporation, retinal explant culture, and post-fixation analysis and quantification are described.
Transcription factors within cellular gene networks control the spatiotemporal pattern and levels of expression of their target genes by binding to cis-regulatory elements (CREs), short (˜300-600 bp) stretches of genomic DNA which can lie upstream, downstream, or within the introns of the genes they control. CREs (i.e., enhancers/promoters) typically consist of multiple clustered binding sites for both transcriptional activators and repressors1-3. They serve as logical integrators of transcriptional input giving a unitary output in the form of spatiotemporally precise and quantitatively exact promoter activity. Most studies of mammalian cis-regulation to date have relied on mouse transgenesis as a means of assaying the enhancer function of CREs4-5. This technique is time-consuming, costly and, on account of insertion site effects, largely non-quantitative. On the other hand, quantitative assays for mammalian CRE function have been developed in tissue culture systems (e.g., dual luciferase assays), but the in vivo relevance of these results is often uncertain.
Electroporation offers an excellent alternative to traditional mouse transgenesis in that it permits both spatiotemporal and quantitative assessment of cis-regulatory activity in living mammalian tissue. This technique has been particularly useful in the analysis of cis-regulation in the central nervous system, especially in the cerebral cortex and the retina6-8. While mouse retinal electroporation, both in vivo and ex vivo, has been developed and extensively described by Matsuda and Cepko6-7,9, we have recently developed a simple approach to quantify the activity of photoreceptor-specific CREs in electroporated mouse retinas10. Given that the amount of DNA that is introduced into the retina by electroporation can vary from experiment to experiment, it is necessary to include a co-electroporated ‘loading control’ in all experiments. In this respect, the technique is very similar to the dual luciferase assay used to quantify promoter activity in cultured cells.
When assaying photoreceptor cis-regulatory activity, electroporation is usually performed in newborn mice (postnatal day 0, P0) which is the time of peak rod production11-12. Once retinal cell types become post-mitotic, electroporation is much less efficient. Given the high rate of rod birth in newborn mice and the fact that rods constitute more than 70% of the cells in the adult mouse retina, the majority of cells that are electroporated at P0 are rods. For this reason, rod photoreceptors are the easiest retinal cell type to study via electroporation. The technique we describe here is primarily useful for quantifying the activity of photoreceptor CREs.
1. Construction of the electroporation chamber
2. DNA preparation
3. Eye collection
4. Retinal dissection
5. Preparation for electroporation
6. Electroporation
7. Placing retinas on filters for culture
8. Harvesting and flatmounting fluorescent retinal explants
9. Imaging and quantification of fluorescence in flatmount
10. Representative Results:
A good electroporation results in expression of the DNA construct(s) across 1/4 to 1/3 of the retinal surface (Fig. 4A). Since rod photoreceptors in particular are efficiently transduced, this technique is ideal for quantifying photoreceptor-specific promoter activity (Fig. 4B). We previously used this approach to quantify a range of promoter variants from the rod-specific Rho and Gnat1 loci10. We found that it is possible to quantify promoter activity over a nearly 300-fold range.
Figure 5 is a sample dataset from a single electroporated retina. In this particular example, the experimental construct pNrl(1.1kb)-DsRed was measured in the red channel and the control construct pNrl(3.2kb)-GFP was measured in the green channel. A complete dataset for the pNrl(1.1kb)-DsRed construct would consist of 6-9 retinas measured in this manner, and standard deviation would be calculated based on all “DsRed normalized to GFP” values. If we were comparing the expression level of pNrl(1.1kb)-DsRed to, for example, pNrl(0.8kb)-DsRed, then both constructs would need to be electroporated with the same GFP control (e.g., pNrl(3.2kb)-GFP) and imaged at the same exposure times. It is possible to pool data collected on different days if a standard DsRed/GFP electroporation is performed on each day (e.g., pNrl(3.2kb)-dsRed + pNrl(3.2kb)-GFP). For each experimental construct, the normalized DsRed level would subsequently be normalized to the normalized DsRed level of the “standard” (pNrl(3.2kb)-dsRed).
The technique we describe here is primarily useful for quantifying the activity of photoreceptor CREs10,13. Cell-type specific cis-regulatory activity can also be quantified in rarer retinal cell types such as bipolar cells14, but this usually requires that the areas of interest to be quantified be selected in vertical cross-sections rather than in flatmount preparations. The same is true of CREs which drive expression in multiple cell types such as photoreceptors and bipolar cells. The experimental procedures are otherwise similar.
Figure 1. Overview of the retinal explant electroporation procedure. First, whole eyes are isolated from postnatal day 0 mouse pups and the retinas are dissected (P1). Second, the retinas are placed in chambers filled with DNA and electroporated (P2). Third, the retinas are placed on filters and cultured for eight days (P3). Fourth, the retinal explants are fixed, mounted on slides, and imaged. Fluorescence intensity is measured with ImageJ software (P4). Fifth, the ImageJ data are processed in a spreadsheet program to quantify the difference in activity of various promoters (P5).
Figure 2. Construction of the electroporation dish. A) Unmodified microslide chamber from Harvard Apparatus, BTX model 453 (catalog #45-0105). B) A Dremel tool is used to cut the handle off a plastic tube rack. The handle is cut into rectangular spacers with the following dimensions: length 0.8cm, height 0.6cm, width 0.3cm. C) The plastic spacers are fitted into the microslide chamber at equal intervals. Aquarium sealant is injected into the gaps between the spacers (not shown). D) A metal bar is placed over the spacers. E) The bar and spacers are clamped onto the slide with binder clips to hold everything in place as the sealant dries overnight. F) The spacers are removed and the wells are tested to ensure that they are watertight. G) The finished slide fits into the plastic dish with the metal bars adjacent to the window in the side of the dish.
Figure 3. Diagram of the electroporation dish with retinas. The chambers are filled with DNA solutions (up to five different solutions at a time). Retinas are placed in the chambers and oriented so that the lens is leaning against the metal bar connected to the positive electrode; three or four retinas will fit in each of the five chambers. The electrical current will cause the negatively-charged DNA molecules to move into the retinal cells.
Figure 4. A) ImageJ measurement of retinal fluorescence levels in flatmount. Grayscale flatmount images in the DsRed (experimental) and GFP (control) channels are opened in ImageJ software; note that these images have been colored for illustrative purposes only. Five measurement circles (1 through 5) are placed over uniformly electroporated regions, avoiding the edges and lens (dotted lines). Three measurement circles (6 through 8) are placed outside the retina to determine background fluorescence levels. B) Cross-sectional images of an electroporated retinal explant at high power. The explant was fixed at postnatal day 8, cryoprotected in 30% sucrose/1X PBS overnight at 4°C, embedded in OCT, and cryo-sectioned at 12μm. The fluorescent constructs pNrl(1.1kb)-DsRed and pNrl(3.2kb)-GFP are expressed in photoreceptor cells in the outer nuclear layer (ONL). INL, inner nuclear layer; GCL, ganglion cell layer.
Figure 5. Processing of fluorescence data using Excel. In step 1, the mean pixel value for each measurement circle is copied into the spreadsheet (cells B3-B12, F3-F5, H3-H5). Measurements #1-5 are the DsRed retinal values and #6-8 are the DsRed background values; measurements #9-13 are the GFP retinal values and #14-16 are the GFP background values. Note that measurement #1 and #9 correspond to the same measurement circle, as do measurements #2 and #10, and so on. In step 2, the average background value for the DsRed and GFP channels is calculated (cells F6, H6). In step 3, the average background is subtracted from every retinal measurement (cells C3-C12). In step 4, each background-subtracted DsRed measurement is normalized to its corresponding GFP measurement (cells D3-D7).
Explant electroporation is a simple means of quantifying cis-regulatory activity in the developing mouse retina. Compared to cis-regulatory analysis via mouse transgenesis, electroporation is much cheaper, requiring only newborn mouse pups, DNA, dissecting instruments, and electroporation/tissue culture equipment. It is also far less time consuming: one experiment requires only a few hours of preparation time, a culture period of about eight days, and a few hours at the end of the experiment for imaging and data analysis. Explant electroporation is also superior to cell culture-based cis-regulatory analysis since actual retinal tissue is utilized. The retina develops quite normally in explant culture—it forms three distinct cellular layers (outer nuclear layer, inner nuclear layer, and ganglion cell layer), although photoreceptors fail to elaborate outer segments.
A further advantage is that explant electroporation is highly reproducible. The same constructs electroporated into different retinas, even on different days, typically results in the same relative expression levels. Furthermore, since the electroporated plasmids are thought to be maintained episomally in the nucleus and are not incorporated into chromosomes, they do not appear to be subject to the same integration site effects that bedevil cis-regulatory analysis performed in transgenic mice.
Explant electroporation does have several limitations. First, only cells that are still in the cell cycle can be efficiently transduced by electroporation15. At P0, rods and other later-born retinal cell types (bipolar cells, amacrine cells, M ller glia) are the main cell populations targeted by this method. Electroporation of cone photoreceptors by P0 electroporation has been reported16 but the efficiency appears to be low. A second limitation is that explant culture beyond two weeks results in progressive malformation of the retina and is therefore not recommended. If promoter quantification is required at late timepoints, however, an in vivo electroporation9 may be performed, followed by retinal dissection at the desired timepoint, flat-mounting of the dissected retina, and quantification as described in section 9. A third limitation is that this assay is only moderately high-throughput. Unlike cell culture-based assays that can test hundreds of constructs in a single experiment, the technique described in this protocol requires a minimum of one whole mouse retina per construct. Thus, only a couple dozen constructs can reasonably be electroporated in a day.
One additional caveat with respect to the quantification of promoter activity using the present approach is that there is a potential for ‘bleed-through’ of DsRed fluorescence into the GFP channel, particularly when assaying very strong promoters. The reason for this is that the emission spectrum of DsRed partially overlaps that of GFP. To circumvent this issue, optimized emission filters should be used that minimize the spectral overlap between DsRed and GFP. When such optimized filter sets are not available, another potential solution would be to use a blue-shifted fluorescent protein (e.g., BFP or CFP) in lieu of GFP.
The authors have nothing to disclose.
The authors would like to thank Karen Lawrence for her help with the section describing construction of the electroporation chamber.
Name of the reagent | Company | Catalogue number | Comments (optional) |
---|---|---|---|
Electroporation dish, Microslide 453 | BTX Harvard Apparatus | 45-0105 | See protocol section 1 for modifications |
100% silicone rubber aquarium cement | Perfecto Manufacturing | ||
Plastic microtube rack | Fisher Scientific | 05-541 | Only the rack handle will be used |
Dremel tool | For cutting the handle off the plastic tube rack | ||
DMEM | Gibco/Invitrogen | 11965 | |
F12 | Gibco/Invitrogen | 11765 | |
L-Glu/pen/strep | Gibco/Invitrogen | 10378-016 | 100X concentration |
Insulin | Sigma-Aldrich | I-6634 | For 1000X stock, resuspend at 5mg/ml in 5mM HCl and filter-sterilize |
FBS | Gibco/Invitrogen | 26140-079 | |
ECM 830 Square-wave electroporator | BTX Harvard Apparatus | ||
Nuclepore filters | Whatman | 110606 | 25mm, 0.2μm |
Tissue culture incubator | 37°C, 5% CO2 | ||
Glass coverslips #1.5 | Fisher Scientific | 12-544E | 0.16mm thick |
Fluorescent compound microscope equipped with camera | Camera should be monochromatic (e.g., ORCA-ER camera by Hamamatsu) | ||
EGFP/DsRed filter set for compound microscope | Chroma Technology Corp. | 86007 | This filter set minimizes bleedthrough between the red and green chanenels |
ImageJ Software | NIH | http://rsbweb.nih.gov/ij/ |