We present a low-cost method to design and construct a light headstage pre-amplifier system with simultaneous neural recording and stimulation capability. This device can be waterproofed for use in swimming animals.
Headstage preamplifiers and source followers are commonly used to study neural activity in behavioral neurophysiology experiments. Available commercial products are often expensive, not easily customized, and not submersible. Here we describe a method to design and build a customized, integrated circuit headstage for simultaneous 4-channel neural recording and 2-channel simulation in awake, behaving animals. The headstage is designed using a free, commercially available CAD-type design package, and can be modified easily to accommodate different scales (e.g. to add channels). A customized printed circuit board is built using surface mount resistors, capacitors and operational amplifiers to construct the unity gain source follower circuit. The headstage is made water-proof with a combination of epoxy, parafilm and a synthetic rubber putty. We have successfully used this device to record local field potentials and stimulate different brain regions simultaneously via independent channels in rats swimming in a water maze. The total cost is < $30/unit and can be manufactured readily.
1. Headstage Design and Fabrication Overview
A completed headstage pre-amplifier system consists of the following components:
2. Design and Layout of the Headstage
We designed a printed integrated circuit board with 4 source followers and 2 pass through stimulation channels using a commercially available software CAD package (www.expresspcb.com). One headstage is designed, and the design pattern is tiled across a larger sheet of circuit board to provide many headstages at a lower cost. The CAD file is transmitted to the printed circuit board (PCB) manufacturing service where double sided, two layer boards are printed using top and bottom copper layers with all holes plated through. The boards use tin/lead solder plated traces and pads that correspond to industry standard FR-4 laminate. The PCB can be ordered and shipped the next business day. Individual headstages are cut from the large tiled PCB sheet and electronic components are connected with solder. An example layout of the headstage used in this protocol is shown (Figure 1). Please see the manufacturer website for detailed instructions and tips on designing a PCB.
3. Preparation and Soldering of Electronic Components
All electronic components used in this protocol are of the Surface Mount Device (SMD) type. The footprint of each device type (resistor, capacitor, etc.) was chosen to minimize wasted space on the headstage, but larger SMD components may be used if necessary.
4. Assembly and Fabrication of Implant and Tether Interfaces
5. Waterproofing the Headstage
Secrets to Success
6. Representative Results
A good recording will follow an input source signal without cutting in and out during movement. To test the headstage, the user should use a function generator as an input to each recording pin and evaluate the waveforms at the Mill Max header output end. Physically moving the headstage should not influence the shape of recorded waveforms.
Figure 1. (A) Schematic view of top layer of printed circuit board (PCB). Red lines indicate copper traces. Yellow lines indicate optional silkscreen layer for positioning of electronic parts. Shown are the operational amplifier placement (central yellow square), resistors (smaller yellow squares) and capacitors (smallest yellow squares). (B) Schematic view of bottom layer of PCB. Green lines indicate copper traces. Large green filled area represents ground plate. A model file of this schematic is provided for download.
Water maze based behavioral tasks provide effective tools to probe animals’ cognitive abilities and representations in real time 1. The use of lightweight and cost effective headstage preamplifiers is especially critical in behavioral neurophysiology applications involving the water maze. Because escaping the cold water provides intrinsic motivation for animals in these tasks, their behavior can be tested in repeated trials without the difficulties of motivating animals on dry mazes. The low cost headstage preamplifier device described here will allow scientists to test hypotheses of neural function in water tasks without the worry of damaging costly equipment.
This protocol is meant to serve as a starting point for custom headstage design. The schematic provided is easily adaptable to include more recording or stimulation channels and can be scaled according to the desires of the experimenter. In particular, by incorporating commercial pin connector setups, one can build headstages that can mate with commercially available electrode interface boards. Although the example provided in this protocol provides unity gain source following on each channel, the interested reader may adjust this amplification by changing the configuration of resistors and capacitors (please see 2 for a detailed review of data acquisition systems).
Although the techniques related to electrode implantation and positioning are beyond the scope of this article, we have used the following setup to record from fixed depth electrodes (Shirvalkar et al. in press, 2010). Further details of how to build and implant movable electrodes for chronic recording can be found here: 3.
The authors have nothing to disclose.
We would like to acknowledge Justin Riceberg for technical assistance in the testing of the headstage. This work was supported in part by National Institutes of Health Grants MH65658, MH073689, and F30 AG034003-01A1, and the Mount Sinai School of Medicine.
Material Name | Tipo | Company | Catalogue Number | Comment |
---|---|---|---|---|
Custom designed Integrated Circuit Board | ExpressPCB.com | Custom | 2 layer double sided PCB | |
Surface mount Resistors | Mouser Electronics | RK73B1JTTDD156J | 1/10 W, 15 M Ohm 0603, Thick film | |
SMD Capacitors | Newark Electronics | 0402YD104KAT2A | 0.1 uF (0402) | |
SMD Operational Amplifier (quad FET) | Mouser Electronics | 595-TLC2274AIPW | Quad FET – low noise | |
9 pin ABS socket | Ginder Scientific | GS09SKT-220 | For animal connection | |
9-pin ABS Plug | Ginder Scientific | GS09PLG-220 | To be implanted in animal | |
Black Delrin Ring Nut | Ginder Scientific | GS09BDN-220 | ||
Black Delrin Cap Nut | Ginder Scientific | GS09BDC-220 | For protecting animal’s implant | |
Amphenol pins (male) | Ginder Scientific | 220-P02 | ||
Amphenol pins (female) | Ginder Scientific | 220-S02 | ||
5-minute epoxy | Devcon Inc. | S-208 / 20845 | ||
Poster Tack Putty | Elmer’s | 026000015318 | ||
Rosin Core Solder | Radio Shack | 64-009 | ||
Soldering Iron | Weller | Pyropen WSTA6 | (adjustable heat) | |
Metal tweezers | Fine Science Tools | Size 5 | ||
Parafilm sheets | American National Can | Parafilm 4″ x 250′ | ||
Magnet wire | Belden | 8052 | Enamel Coated | |
Ammeter/ Multimeter | Fluke Mfg Co. | 77 Multimeter | ||
Millmax Double Row Headers | Millmax / Mouser | 575 – 002101 | 0.05″ | |
Solder Wick | Chemtronics | 7-10L | 0.75 in. |