Source: Migneault, F. et al, Efficient Transcriptionally Controlled Plasmid Expression System for Investigation of the Stability of mRNA Transcripts in Primary Alveolar Epithelial Cells. J. Vis. Exp. (2020).
This video describes the method of regulating gene expression in cultured cells by transfection with a plasmid containing a gene of interest and a regulatory plasmid. The expression of this plasmid can be controlled by tetracycline or its synthetic analogs, making this system a useful model to study regulatable gene expression.
All procedures involving animal models have been reviewed by the local institutional animal care committee and the JoVE veterinary review board.
1. Transfection of the response plasmid expressing the gene of interest (GOI) into primary alveolar epithelial cells
2. Induction of the transcription inhibition of the GOI
NOTE: The cells can be pre-treated with the desired treatments before doxycycline induction to assess their impact on mRNA stability (Figure 3).
Figure 1: Efficiency of the transfection of alveolar epithelial cells in primary culture by pipette electroporation. Primary alveolar epithelial cells were transiently transfected with 2 µg of a pcDNA3 plasmid (empty, clones #1 and #2) that expressed or did not express GFP protein. Transfection efficiency was assessed 48 h following transfection by (A) fluorescence microscopy or (B) flow cytometry. One-way ANOVA and Bonferroni post hoc test; *p < 0.001 vs. empty. Cells from at least four different rats (n ≥ 4) were used for each experimental condition. Scale bar = 200 µm.
Figure 2: Modulation of endogenous αENaC mRNA by doxycycline in alveolar epithelial cells. Alveolar epithelial cells were treated with 1.0 µg/mL doxycycline for a period of 1-24 h. The expression of αENaC mRNA was quantified by quantitative RT-PCR and presented as the expression of αENaC mRNA ± SEM compared to that in untreated cells (Ctrl; t = 0) after normalization according to β-actin expression (one-way ANOVA, n = 4). Doxycycline did not modulate endogenous αENaC mRNA over time. Previously published as Figure S4 in Migneault et al.
Figure 3: Modulation of V5-αENaC mRNA stability by different cellular and inflammatory stresses. Primary alveolar epithelial cells were transiently cotransfected with the pTet-Off plasmid and the pTRE-tight plasmid encoding αENaC cDNA bearing a V5 epitope upstream of its open reading frame and complete 3' UTR sequences. The cells were pretreated for 30 min with 1.0 µM cycloheximide (CHX) (A) or 15 µg/mL LPS (B) or for 5 h with 100 ng/mL TNF-α (C), followed by treatment with 1.0 µg/mL doxycycline for a period of 15-120 min. Expression of V5-αENaC mRNA was measured by quantitative RT-PCR and presented as the percentage ± SEM of V5-αENaC mRNA expression in untreated cells (t = 0) after normalization according to the expression of tTA-Ad. Cells from at least three different rats (n ≥ 3) were used for each experimental condition. (D) The half-life (t1/2) of V5-αENaC mRNA in treated cells was compared to the half-life of mRNA in cells (Ctrl). The half-lives were measured according to the rate constant (K) of the V5-αENaC mRNA degradation curve using the equation t1/2 = ln 2/K and then expressed as min ± SEM (one-way ANOVA test and Bonferroni post hoc test; *p < 0.01 vs. control; n ≥ 3). Adapted from Figure 36 previously published in Migneault, F.
Figure 4: Posttranscriptional modulation of V5-αENaC mRNA by the RNA-binding proteins hnRNPK, Dhx36, and Tial1. (A) Primary alveolar epithelial cells were cotransfected with the pTRE-tight plasmid encoding V5-αENaC mRNA along with an expression vector for the Dhx36, hnRNPK, or Tial1 RBPs and the pTet-Off plasmid. V5-αENaC mRNA expression was quantified by RT-qPCR 72 h posttransfection and expressed as the percentage ± SEM of V5-αENaC mRNA expression compared to that in cells transfected with an empty vector (pcDNA3) after normalization according to the expression tTA-Ad. Overexpression of Dhx36 and Tial1 significantly inhibited V5-αENaC mRNA expression, whereas overexpression of hnRNPK had no effect. *p < 0.05 according to the Kruskal-Wallis test and Dunn's post hoc test compared to empty vector; n ≥ 3 samples from different animals were tested in duplicate for each experimental condition. (B) The proximal portion of the αENaC 3' UTR was deleted by cloning the distal region of the 3' UTR next to the αENaC stop codon in the pTRE-tight plasmid (V5-αENaC-Del5). (C) Primary alveolar epithelial cells were cotransfected with V5-αENaC or V5-αENaC-Del5 in the pTRE-tight vector along with the pTet-Off plasmid and the expression vector for Dhx36 or Tial1 RBP overexpression. V5-αENaC mRNA expression was quantified by RT-qPCR 72 h posttransfection and expressed as the percentage ± SEM of V5-αENaC mRNA expression compared with that in cells transfected with an empty vector (pcDNA3) after normalization according to the expression of tTA-Ad. Overexpression of Dhx36 and Tial1 had no effect on V5-αENaC-Del5 mRNA expression. *p < 0.05 according to the Kruskal-Wallis test and Dunn's post hoc tests upon comparison of the experimental vectors to the empty vector; #p < 0.05 according to the Mann-Whitney U-test upon comparison of the experimental vectors to the complete 3' UTR mutant; n ≥ 6 for each experimental condition. Adapted from Figures 5 and 7 previously published in Migneault et al.
The authors have nothing to disclose.
Bright-LineHemacytometer | Sigma-Aldrich | Z359629 | |
DM IL LED Inverted Microscope with Phase Contrast | Leica | ||
Dulbecco’s Phosphate-buffered Saline (D-PBS), without calcium and magnesium | Wisent Bioproducts | 311-425-CL | |
Doxycycline hyclate | Sigma-Aldrich | D9891-1G | |
MEM, powder | Gibco | 61100103 | |
MSC-Advantage Class II Biological Safety Cabinets | ThermoFisher Scientific | 51025413 | |
Neon Transfection System 10 µL Kit | Invitrogen | MPK1025 | |
Neon Transfection System Starter Pack | Invitrogen | MPK5000S | |
pcDNA3 vector | ThermoFisher Scientific | V790-20 | |
pcDNA3-EGFP plasmid | Addgene | 13031 | |
pTet-Off Advanced vector | Takara Bio | 631070 | |
pTRE-Tight vector | Takara Bio | 631059 | |
Purified alveolar epithelial cells | n.a. | n.a | |
QIAEX II Gel Extraction Kit | QIAGEN | 20021 | |
QIAGEN Plasmid Maxi Kit | QIAGEN | 12162 | |
QIAprep Spin Miniprep Kit | QIAGEN | 27104 | |
QuantStudio 6 and 7 Flex RealTime PCR System Software | Applied Biosystems | n.a. | |
Tet System Approved FBS | Takara Bio | 631367 |