Summary

Ovarian Tissue Oocyte-In Vitro Maturation for Fertility Preservation

Published: May 17, 2024
doi:

Summary

Presented here is ovarian tissue oocyte-in vitro maturation (OTO-IVM), an accessible technique within a medical assisted reproduction (MAR) laboratory offering realistic additional fertility preservation options to patients who need ovarian tissue cryopreservation.

Abstract

Mature oocyte vitrification is the standard of care to preserve fertility in women at risk of infertility. However, ovarian tissue cryopreservation (OTC) is still the only option to preserve fertility in women who need to start gonadotoxic treatment urgently or in prepubertal children. During ovarian cortex preparation for cryopreservation, medullar tissue is removed. Growing antral follicles reside at the border of the cortex-medullar interface of the ovary and are broken during this process, releasing their cumulus-oocyte complex (COC). By thoroughly inspecting the medium and fragmented medullar tissue, these immature cumulus-oocyte complexes can be identified without interfering with the OTC procedure. The ovarian tissue-derived immature oocytes can be successfully matured in vitro, creating an additional source of gametes for fertility preservation. If OTC is performed within or near a medical assisted reproduction laboratory, all necessary in vitro maturation (IVM) and oocyte vitrification tools can be at hand. Furthermore, upon remission and child wish, the patient has multiple options for fertility restoration: ovarian tissue transplantation or embryo transfer after the insemination of vitrified/warmed oocytes. Hence, ovarian tissue oocyte-in vitro maturation (OTO-IVM) can be a valuable adjunct fertility preservation technique.

Introduction

Fertility preservation (FP) options for women planned for gonadotoxic treatment, sex-reassignment therapy, or women who have a genetic predisposition for premature ovarian failure, depend on the health and age of the patient, available timeframe, type of treatment, patient's preference, and FP procedures available at the fertility center of choice. Vitrification of mature oocytes obtained after ovarian stimulation with gonadotropins and oocyte retrieval in a medical assisted reproduction (MAR) laboratory cycle is considered the preferred option for FP1,2. However, for prepubertal girls, women in whom the urgent start of gonadotoxic treatment or gonadectomy is required, or women with a high risk of permanent amenorrhea due to gonadotoxic treatment, a cycle of ovarian stimulation with gonadotropins is not possible, and ovarian tissue cryopreservation (OTC), which is an accepted and valid technique for FP1,2,3, is the only option. The goal of OTC is to cryopreserve thousands of dormant primordial follicles in the ovarian cortex tissue, which can resume growth after the transplantation of frozen/thawed tissue onto the remaining ovary or in a peritoneal pocket after the careful screening of minimal residual disease in representative tissue fragments.

In order to obtain cortical fragments of 1-2 mm thickness suitable for cryopreservation, the soft medullar tissue needs to be removed. This medullar tissue typically entails growing follicles in various stages of development that escape the stiff ovarian cortex to allow for their growth and expansion4. For many years, several labs have been investigating the potential of these oocytes recovered from follicles residing in the remnant medullar tissue after ovarian cortical fragment preparation using in vitro maturation (IVM)5,6,7, referred to as ovarian tissue oocyte IVM (OTO-IVM). Antral follicles, even those less than 6 mm in diameter, contain immature oocytes surrounded by cumulus cells that can mature, fertilize, and develop into healthy babies using an IVM system8,9. IVM is considered the standard of care for women at risk for ovarian hyperstimulation syndrome (OHSS), such as polycystic ovary syndrome (PCOS) patients. However, in the field of FP, there are limited data available for IVM in cases with a contraindication for ovarian stimulation; IVM of oocytes collected transvaginally is still considered innovative, and OTO-IVM is considered experimental2,10. That said, the reports of the first live births after OTO-IVM11,12,13 highlight the potential of using OTO-IVM as an add-on technique when OTC is required for FP in patients14.

This study provides technical details to adopt OTO-IVM in the MAR laboratory and illustrates the results obtained in a single center.

Protocol

The present study on OTO-IVM has been approved by the local Ethical Committee of UZ-Brussels (addendum of project 2008/068 and project 2022/303). All patients signed written informed consent. Each patient was individually assessed by a reproductive medicine specialist physician, navigator nurse, and the referring oncologist to compose the optimal FP treatment plan, taking into account the patient's preferences14. In short, patients eligible for OTC are in urgent need of FP and are less than 36…

Representative Results

Over the past decade, 98 patients undergoing oophorectomy or ovarian biopsy for OTC were also offered OTO-IVM. The results presented here are an update of the clinical program as published before7,13. Immature oocytes obtained during ovarian tissue processing were matured in vitro predominantly for 30 h. However, a more flexible maturation time was allowed for practical reasons or because of low maturation, ranging from 28-42 h. Patients opted predominan…

Discussion

The priority of the FP procedure is always to manipulate and freeze the ovarian cortex according to the standard operating protocol that has been validated in the clinic. A drawback in FP is the absence of a standard protocol available in the published literature regarding OTC and OTO-IVM. It is difficult to assess the efficiency and validity of the techniques and adaptations since there is a large time gap between freezing/vitrification and thawing/warming in a clinical setting. If changes to the OTC protocol are made t…

Divulgations

The authors have nothing to disclose.

Acknowledgements

This work was conducted at the IVF laboratory of Brussels IVF, Universitair Ziekenhuis of VUB, Brussels. The authors would like to thank all Brussels IVF laboratory team members for their high skills, accuracy, and flexibility needed to establish a fertility preservation unit within a MAR laboratory.

Materials

1000 µL filter tips Eppendorf/VWR International 613-6780 COC search
Benchtop Cooler Fisher Scientific 15-350-54 Benchtop Cooler lid is used to prepare the tissue, Benchtop Cooler tube holder to keep cryovials with freezing medium cooled
Corning Cell culture dish, non-treated, 100 mm Corning/VWR International 430591 Dish for ovarian tissue preparation
CryoSure-DMSO WAK Chemicals 0482 Cryoprotectant for ovarian tissue cryopreservation
Cumulase Origio/CooperSurgical 16125000A recombinant human hyaluronidase enzyme for cumulus cell removal after IVM
Decontamination spray: Suprox Medipure LTD MP016 Desinfectant solution for aseptic handling with bactericide and sporicide action
Disposable scalpels Swann-Morton 0511 Ovarian tissue preparation
Falcon 14 mL Round Bottom Polystyrene Test Tube, with Snap Cap, Sterile Falcon/VWR International BDAA352057 Medium container 
Falcon Cell strainer 70 µm Falcon/VWR International 352350 Filter for elimination of red blood cell contamination and COC search
Freeze control Ampoule Cryochamber and Temperature Controller Cryologic CL-8800i   CC60AS Slow freezing machine
FSH: Menopur 75 IU Ferring BE197504 Follicle Stimulating Hormone : Supplement for IVM medium
Handling pipette 290-310 µm Vitrolife 15538 COC search: gentle transfer of COC without damaging oocyte-cumulus cell connectivity
hCG: Brevactid 5000 IE Ferring 5008001036 Human Chorionic Gonadotropin : Supplement for IVM medium
High security tube CryoBioSystem 022252 cryovial, heat-sealed for safe cryostorage
HSA-solution Vitrolife 10064 Human serum Albumin: supplement for IVM medium
Leibovitz's L-15 medium Life Technologies Europe 31415-029 Handling medium for ovarian tissue preparation
MediCult IVM system Origio/CooperSurgical 82214010 medium for IVM containing both LAG and IVM medium. IVM medium needs to be supplemented as detailed in the protocol
METZENBAUM fino scissors 140 mm Chirurgical Maintenance VIZ08280314 Medium size scissors for initial medulla removal
Nunc 4-well dishes for IVF Nunc/VWR International 144444 COC collection during COC search and IVM culture
Nunc Invitro fertilization Petri Dish with Vented Lid, 60 mm, Non-Pyrogenic, Sterile Thermo Scientific/VWR NUNC150270 Dish for COC search
Oocyte handling medium : Flushing Medium with heparin Origio/CooperSurgical 10765060 Search medium for COC search
Ovoil Vitrolife 10029 oil for IVM culture
Penicillin/Streptomicin mix Life Technologies Europe 15140-148 Supplement for OTC handling medium
Scissors, curved, 150 mm long, 20 mm blade Chirurgical Maintenance VIREBST999-SC Small size scissors for residual medulla removal

References

  1. Practice Committee of the American Society for Reproductive Medicine. Fertility preservation in patients undergoing gonadotoxic therapy or gonadectomy: a committee opinion. Fertility and Sterility. 112 (6), 1022-1033 (2019).
  2. Anderson, R. A., et al. ESHRE guideline: female fertility preservation. Human Reproduction Open. 2020 (4), (2020).
  3. Karavani, G., et al. Chemotherapy-based gonadotoxicity risk evaluation as a predictor of reproductive outcomes in post-pubertal patients following ovarian tissue cryopreservation. BMC Women’s Health. 21 (1), 201 (2021).
  4. Fiorentino, G., et al. Biomechanical forces and signals operating in the ovary during folliculogenesis and their dysregulation: implications for fertility. Human Reproduction Update. 29 (1), 1-23 (2023).
  5. Revel, A., et al. Oocyte collection during cryopreservation of the ovarian cortex. Fertility and Sterility. 79 (5), 1237-1239 (2003).
  6. Fasano, G., Moffa, F., Dechène, J., Englert, Y., Demeestere, I. Vitrification of in vitro matured oocytes collected from antral follicles at the time of ovarian tissue cryopreservation. Reproductive Biology and Endocrinology. 9, 150 (2011).
  7. Segers, I., et al. In vitro maturation (IVM) of oocytes recovered from ovariectomy specimens in the laboratory: a promising "ex vivo" method of oocyte cryopreservation resulting in the first report of an ongoing pregnancy in Europe. Journal of Assisted Reproduction and Genetics. 32 (8), 1221-1231 (2015).
  8. Guzman, L., et al. Developmental capacity of in vitro-matured human oocytes retrieved from polycystic ovary syndrome ovaries containing no follicles larger than 6 mm. Fertility and Sterility. 98 (2), e1-2 (2012).
  9. Mackens, S., et al. Outcome of in-vitro oocyte maturation in patients with PCOS: does phenotype have an impact. Human Reproduction. 35 (10), 2272-2279 (2020).
  10. Practice Committees of the American Society for Reproductive Medicine, the Society of Reproductive Biologists and Technologists, and the Society for Assisted Reproductive Technology. In vitro maturation: a committee opinion. Fertility and Sterility. 115 (2), 298-304 (2021).
  11. Prasath, E. B., et al. First pregnancy and live birth resulting from cryopreserved embryos obtained from in vitro matured oocytes after oophorectomy in an ovarian cancer patient. Human Reproduction. 29 (2), 276-278 (2014).
  12. Uzelac, P. S., Delaney, A. A., Christensen, G. L., Bohler, H. C. L., Nakajima, S. T. Live birth following in vitro maturation of oocytes retrieved from extracorporeal ovarian tissue aspiration and embryo cryopreservation for 5 years. Fertility and Sterility. 104 (5), 1258-1260 (2015).
  13. Segers, I., et al. Live births following fertility preservation using in-vitro maturation of ovarian tissue oocytes. Human Reproduction. 35 (9), 2026-2036 (2020).
  14. Delattre, S., et al. Combining fertility preservation procedures to spread the eggs across different baskets: a feasibility study. Human Reproduction. 35 (11), 2524-2536 (2020).
  15. Jadoul, P., et al. Laparoscopic ovariectomy for whole human ovary cryopreservation: technical aspects. Fertility and Sterility. 87 (4), 971-975 (2007).
  16. Vilela, J. d. M. V., Dolmans, M. M., Amorim, C. A. Ovarian tissue transportation: a systematic review. Reproductive Biomedicine Online. 42 (2), 351-365 (2021).
  17. Vanhoutte, L., Cortvrindt, R., Nogueira, D., Smitz, J. Effects of chilling on structural aspects of early preantral mouse follicles. Biology of Reproduction. 70 (4), 1041-1048 (2004).
  18. Arav, A., Zvi, R. Do chilling injury and heat stress share the same mechanism of injury in oocytes. Molecular and Cellular Endocrinology. 282 (1-2), 150-152 (2008).
  19. Nikiforov, D., et al. Improving the maturation rate of human oocytes collected ex vivo during the cryopreservation of ovarian tissue. Journal of Assisted Reproduction and Genetics. 37 (4), 891-904 (2020).
  20. Vuong, L. N., et al. Live births after oocyte in vitro maturation with a prematuration step in women with polycystic ovary syndrome. Journal of Assisted Reproduction and Genetics. 37 (2), 347-357 (2020).
  21. Kirillova, A., et al. Improved maturation competence of ovarian tissue oocytes using a biphasic in vitro maturation system for patients with gynecological malignancy: a study on sibling oocytes. Journal of Assisted Reproduction and Genetics. 38 (6), 1331-1340 (2021).
  22. Segers, I., et al. In Vitro Maturation (IVM) culture conditions: the effect of oxygen tension and medium volume. Human Reproduction. 32, 126-127 (2017).
  23. De Munck, N., Santos-Ribeiro, S., Stoop, D., Van de Velde, H., Verheyen, G. Open versus closed oocyte vitrification in an oocyte donation programme: a prospective randomized sibling oocyte study. Human Reproduction. 31 (2), 377-384 (2016).
  24. Anderson, R. A., McLaughlin, M., Wallace, W. H. B., Albertini, D. F., Telfer, E. E. The immature human ovary shows loss of abnormal follicles and increasing follicle developmental competence through childhood and adolescence. Human Reproduction. 29 (1), 97-106 (2014).
  25. Karavani, G., et al. Age-dependent in vitro maturation efficacy of human oocytes-is there an optimal age. Frontiers in Cell and Developmental Biology. 9, 667682 (2021).
  26. Bourg, M., et al. Is in vitro maturation of oocytes retrieved ex vivo from ovarian tissue an effective fertility preservation technique in the presence of organic ovarian cysts. European Journal of Obstetrics and Gynecology and Reproductive Biology. 281, 87-91 (2023).
This article has been published
Video Coming Soon
Keep me updated:

.

Citer Cet Article
Segers, I., Mateizel, I., Wouters, K., Van Moer, E., Anckaert, E., De Munck, N., De Vos, M. Ovarian Tissue Oocyte-In Vitro Maturation for Fertility Preservation. J. Vis. Exp. (207), e65255, doi:10.3791/65255 (2024).

View Video