The proposed technique will provide a novel, efficient, frugal, and non-invasive approach for imaging fluidic flow through a packed powder bed, yielding high spatial and temporal resolution.
The development of novel imaging techniques of molecular and colloidal transport, including nanoparticles, is an area of active investigation in microfluidic and millifluidic studies. With the advent of three-dimensional (3D) printing, a new domain of materials has emerged, thereby increasing the demand for novel polymers. Specifically, polymeric powders, with average particle sizes on the order of a micron, are experiencing a growing interest from academic and industrial communities. Controlling material tunability at the mesoscopic to microscopic length scales creates opportunities to develop innovative materials, such as gradient materials. Recently, a need for micron-sized polymeric powders has been growing, as clear applications for the material are developing. Three-dimensional printing provides a high-throughput process with a direct link to new applications, driving investigations into the physio-chemical and transport interactions on a mesoscale. The protocol that is discussed in this article provides a non-invasive technique to image fluid flow in packed powder beds, providing high temporal and spatial resolution while leveraging mobile technology that is readily available from mobile devices, such as smartphones. By utilizing a common mobile device, the imaging costs that would normally be associated with an optical microscope are eliminated, resulting in a frugal-science approach. The proposed protocol has successfully characterized a variety of combinations of fluids and powders, creating a diagnostic platform for quickly imaging and identifying an optimal combination of fluid and powder.
Inkjet-based binder jetting into powder media represents an important technology in additive manufacturing (3D printing). The binder jetting process begins with the deposition of functional fluids into powder media using a scanning inkjet printing process. Specifically, an inkjet print head translates over the powder surface, depositing the liquid binding agent onto a powder surface, and thereby forming a solid part in a layer-by-layer fashion1. Inkjet-based binder jetting technologies generally include sand, metal powders, and polymeric powders. However, to expand the materials' space in binder jetting, a fundamental approach to investigating fluid-powder and powder-powder interactions, tribology, powder packing density, and particle aggregation is required. Specifically, for fluid-powder interactions, a critical need exists for the ability to image fluid flow through powder beds in real-time. This promises to be a powerful tool for researchers to include as a characterization technique and potentially as a screening method for different combinations of fluids and powders2,3,4, as well as more complex systems, such as concrete 3D-printing systems that utilize particle-bed methods.
The development of novel imaging techniques of molecular and colloidal transport, including nanoparticles, is an active area of investigation in microfluidic and millifluidic studies. Probing intermolecular interactions by imaging techniques can be challenging, as little work has been done to probe these types of interactions under the conditions of unsaturated and unsteady fluid flow. Many of the studies that are reported in the literature have focused on a saturated, pre-wetted, porous media, such as glass bead5,6,7,8,9,10,11,12 and soils13,14,15,16,17,18. This technique provides a non-invasive approach, resulting in high temporal and spatial resolution2,3,4,19. Furthermore, the developed technique provides a novel method for characterizing and quantifying nano-scale and micron-scale particle transport in a variety of porous media, focusing on polymeric powders.
The proposed technique utilizes a mobile device to record unsaturated, unsteady fluidic transport through porous polymeric media with particle dimensions that are representative of the powders used in 3D printing systems that utilize fluidic powder-bed fusion technologies. This technique is advantageous as the flow cells are cost-effective, reusable, small, and easily handled, illustrating the dominant aspects of frugal science. The ability to implement these simple experiments into a field study is very straightforward, eliminating the complications, cost, and time that are required in optical microscopy. Given the ease of creating the setup, the access to quick results, and the minimal number of sample requirements, this technique is an optimal platform for diagnostic screening.
1. Preparing the microfluidic flow cell
NOTE: For this protocol, a commercial microfluidic flow cell will be utilized. By using a commercial product that is designed for light penetration from an optical microscope, any challenges regarding brightfield illumination of the media will be minimized.
2. Packing the powder into the channel
3. Preparing the solvent
4. Preparing the white light table
5. Starting the experiment
6. Analyzing the data
In the section on analyzing data, the data for the time-lapsed images in Figure 3 illustrate the 75 wt% ethanol solution infiltrating the polycarbonate (PC) powder. Fluorescein was added to the solution to enhance the image quality for this publication. In the time-lapse images, the time-resolved process begins when the fluid is added to the inlet. Time, t, starts as soon as the fluid begins to penetrate the channel. The series of images demonstrates the progression of the fluid and fluorescein. In PC, the fluid and fluorescein are transported at the same flow rate. The open red circles on the plot in Figure 4 represent the exact time and distance of the compiled information found in Table 1. Infiltration of the fluid into the powder bed combined with the incremental time steps (red circles) are visually represented in Figure 3.
In the interval from 1 s to 2 s, the distance traveled by the fluid has doubled. During the interval from 2 s to 5 s, the distance that the fluid has traveled also doubles. From 5 s to 10 s, the fluid is still moving quickly. However, after 15 s, the flow rate is slowing to a rate of approximately 2 mm every 5 s. For a single powder and fluid combination, five tests are performed in a single group. The number of total tests may vary for each group. For example, if one of the five experiments fails, then a new packed microchannel will be analyzed in lieu of the failed test. Failure is defined as a fluid that does not penetrate the powder bed or only partially penetrates the powder bed because of the bubbles forming in the channel resulting from inconsistent powder packing. To observe the standard deviation between a set of tests in a group refer to Donovan21, specifically Figure 19 and Figure 21.
Figure 1: Polymeric powder loosely packed into a microfluidic flow cell that could result in a failed experiment if not addressed. Please click here to view a larger version of this figure.
Figure 2: A cartoon representation of the experimental setup. This image is not drawn to scale. Please click here to view a larger version of this figure.
Figure 3: A representative time-lapse series of images from a single experiment. Images from left to right exemplify the flow of solvent (enhanced with fluorescent dye for visualization) through the packed porous bed. Note that the leading front is not uniform, so an average distance of the propagating front is typically used. Please click here to view a larger version of this figure.
Figure 4: Quantitative representation of the average distance of propagation (Δl) versus time (t) as the fluid penetrates the packed powder bed. Red circles represent data points for each time increment that is seen in Figure 3. Please click here to view a larger version of this figure.
Time (s) | Distance (mm) |
0 | 0 |
1 | 2.1 |
2 | 4.1 |
5 | 8.3 |
10 | 12.8 |
15 | 15.8 |
20 | 17.9 |
25 | 20.1 |
30 | 22.1 |
Table 1: Distance and time values for the red dots that are shown in Figure 4.
Supplementary Figure 1: CAD drawing of the opaque 3D printer cover in black polylactic acid (PLA) filament. Please click here to download this File.
Supplemental File: Screenshots of the steps involved in data analysis using the tracking software. Please click here to download this File.
The protocol that is provided is highly dependent on the material characteristics of the particles that are chosen. Material properties impacting flow include particle size distribution2,3,4,5,11,21, particle surface roughness11, chemical properties at the particle surface2,3,4,5,11,16,21,23,24,25, molecular dipole moments, particle shape11, and particle-particle interactions2,3,4,5,11,16,23,24,25,26,27. These properties directly affect the packing density of the powder in the microfluidic channel and, consequently, the capillary flow behavior of the fluid as it wets the particles2,3,4,5,7,8,14,15.
The powder packing density plays a very important role in this technique. If the powder is not packed densely enough, air bubble formation or the segregation of powder during imaging may occur, preventing a reproducible sample. Therefore, tapping the microfluidic channel (step 2.1.1) while packing powder is a very crucial step. Figure 1 represents a microfluidic flow cell with inconsistent packed powder after the fluid infiltrated the entire channel. The segregation of the powders can be seen toward the input of the channel. Once the cell is packed, before running the experiment, checking the powder packing density on the lightbox is a helpful way to avoid these types of failed experiments. The powders that are presented in this protocol have been analyzed utilizing a standardized tap density test, specifically ASTM D7481-18, to report bulk packing density as a function of taps20. ASTM D7481-18 does not need to be conducted for the proposed protocol to be completed, but the ASTM will provide supplemental information on the powder.
Particle size distribution, a measurable characteristic, directly impacts the bulk packing density23,24,25. In a packing system, larger particles will create a large void space, providing a position for the small particles to settle. Measuring the ratio of large to small particles provides insight into the volume of void space for the fluid to penetrate the powder. When packing the microfluidic flow cell for an experiment, all the small particles will fill the void space that is made by larger particles. Minimizing the available void spaces will impact the fluid transport, as well as provide more sites for molecular and particle retention to occur. For further technique improvement, the similar-sized particles (e.g., those particles from 60 μm to 65 μm) need to be further investigated to determine if this technique has the sensitivity to differentiate between particles with an average particle size of only a couple microns difference.
Bulk density is not an intrinsic property of the powder, as it is very dependent on how the material is handled26. Whether the powder was made in-house or transported by plane, train, or car may greatly impact the value for the bulk packing density, impacting the particle size distribution. Whether the powder samples are selected from the top versus the bottom of a container can also impact the results. Imagine opening a box of cereal; the material at the top is comprised of all the large pieces, and the material at the bottom of the box is comprised of all the smaller pieces. In the same way, a powder that has experienced stress (vibrations) from travel will have a particle size gradient throughout the container.
For polymeric powders, verifying that the internal surfaces of the flow cells have received a hydrophobic treatment is integral. If the walls of the microfluidic flow cell have not been treated, then wall effects often occur when imaging the fluid transport. Wall effects are observed when the fluid travels along the wall much faster and farther than the bulk fluid flow through the powder of interest. If the wall is not hydrophobic, it allows for a path of least resistance to form, and fluid will flow along that path (the wall) and not through the powder. Therefore, utilizing hydrophobic cells allows for a more representative study of the flow of aqueous systems through a porous media, whereas hydrophilic cells should be utilized for organic systems.
For some polymeric powders, a tribocharging effect26,27 that occurs between the powder particles and the tip of the plastic pipet can be present. As a result, the powder may adhere to the outside of the pipet tip when loading the pipet with powder particles. The powder adhesion has not caused any issue with transferring the powder or the particle packing. However, if the particle adhesion does become an issue, a couple of modifications that may reduce the occurrence of particles adhering to the pipet can be attempted. One option is to dampen the outer tip of the pipet with water and blot the tip dry to disrupt the static electricity. Another option is to use a glass pipet instead of plastic. A third option is to transfer the powder particles in a more humid environment.
The technique is a frugal method for a one-dimensional (1D) measurement of the fluid intrusion length within a 3D particle bed. Therefore, the technique will only be able to account for the preferential flow path in the direction of interest.
The current protocol discusses fluidic transport through a porous media, utilizing a frugal setup and eliminating the complications and expenses of an optical microscope. Additionally, with a UV-transilluminating table to excite the fluorescing and photoluminescent species, the technique could also be used to image molecular and nanoparticle fate and transport. For this setup, the solvent protocol would need to be modified for the molecular and nanoparticle systems.
The authors have nothing to disclose.
None.
µ-Slide I Luer | ibidi | 80191 | Microfluidic flow cell |
Beaker | Southern Labware | BG1000-800 | Glassware |
CALIBRE 301-58 LT Natural Polycarbonate Resin | TRINSEO LLC | CALIBRETM 301-58 LT | Natural polycarbonate resin |
Ethanol | Sigma Aldrich | 1.00983 | Solvent |
Fume Hood | Kewaunee | Supreme Air LV Fume Hoods | Used with 92 FPM at 18" opening |
iPhone 7 plus | Apple | Camera | |
Opaque 3D printed material | The CAD drawing is provided in the supplemental file | ||
ORGASOL 2002 ES 6 NAT 3 | ARKEMA | A12135 | Polyamide powder |
Pipet | VWR | 10754-268 | Disposable Transfer Pipet |
Pipette | Globe Scientific Inc. | 3301-200 | Pipette that can hold 125 µL of fluid |
Polystyrene | Advanced Laser Materials, LLC. | PS200 | Polystyrene for sintering |
Tracker | Video analysis and modeling tool | ||
VariQuest 100 White Light Model 3-3700 | FOTODYNE | 3-3700 | White light |
Water | Distilled water |