Summary

レシオメトリック指標を用いた一次ニューロンにおけるミトコンドリアグルタチオンレドックス状態の生画像化

Published: October 20, 2021
doi:

Summary

本稿では、共焦点ライブ顕微鏡を用いた一次海馬および皮質ニューロンにおける急性摂動に対する基底レドックス状態と酸化還元反応の違いを判断するためのプロトコルについて説明する。このプロトコルは、他の細胞タイプや顕微鏡に最小限の変更で適用できます。

Abstract

ミトコンドリアレドックスホメオスタシスは、神経の生存率と機能のために重要です.ミトコンドリアには複数のレドックス系が含まれていますが、豊富なチオールジスルフィドレドックスバッファーグルタチオンは抗酸化防御の中心的なプレーヤーと考えられています。したがって、ミトコンドリアグルタチオン酸化還元電位を測定すると、ミトコンドリア酸化還元状態および酸化ストレスに関する有用な情報が得られます。グルタレドキシン1-roGFP2(Grx1-roGFP2)は、510nmで1つの放出ピークを有する400nmおよび490nmの2つの酸化還元状態感受性励起ピークを有するグルタチオン酸化還元電位の遺伝的にコードされた緑色蛍光タンパク質(GFP)ベースの比比指標である。本稿では、一次海馬および皮質ニューロンにおけるミトコンドリア標的Grx1-roGFP2の共焦点ライブ顕微鏡を行う方法について説明する。これは、定常性ミトコンドリア・グルタチオン・レドキ酸価(例えば、疾患状態または長期治療を比較する)を評価する方法と、急性治療時の酸化還元性の変化を測定する方法(興奮性薬物 N-メチル-D-アスパルテート(NMDA)を例として使用する)を説明する。さらに、この記事では、Grx1-roGFP2とミトコンドリア膜電位指標であるテトラメチルrhodamine、エチルエステル(TMRE)の共イメージングを紹介し、Grx1-roGPF2がマルチパラメトリック分析のための追加の指標でどのように多重化できるかを示します。このプロトコルは、(i)共焦点レーザー走査顕微鏡の設定を最適化する方法の詳細な説明を提供し、(ii)刺激のための薬物を適用し、その後、ジアミドとジチオトライトールによるセンサーキャリブレーション、および(iii)ImageJ / FIJIを用いてデータを分析する。

Introduction

いくつかの重要なミトコンドリア酵素およびシグナル伝達分子は、チオール酸化還元調節1の対象となります。さらに、ミトコンドリアは活性酸素種の主要な細胞源であり、酸化的損傷に対して選択的に脆弱である2。したがって、ミトコンドリア酸化還元電位は、バイオエネルギー、細胞シグナル伝達、ミトコンドリア機能、および最終的に細胞生存率3,4に直接影響を及ぼす。ミトコンドリアマトリックスには、酸化還元恒常性を維持し、抗酸化防御剤搭載するチオールジスルフィドレドックスバッファーグルタチオン(GSH)の量(1-15 mM)が多く含まれています。GSHは、標的タンパク質に共有結合(S-グルタチオン化)を使用して酸化還元の状態と活性を制御し、酸化タンパク質を減少させる解毒酵素の範囲で使用されます。したがって、ミトコンドリアグルタチオン酸化還元電位は、ミトコンドリア機能および病態生理学を研究する際の非常に有益なパラメータである。

roGFP2は、人工ジチオールジスルフィドペア7,8を形成する2つの表面露出システインを添加することによって酸化還元感受性にされたGFPの変異体である。それは〜510 nmで1つの放出ピークを有し、〜400 nmおよび490 nmで2つの励起ピークを有する。重要なことに、2つの励起ピークの相対振幅はroGFP2の酸化還元状態に依存し(図1)、このタンパク質をレシオメトリックセンサーにします。Grx1-roGFP2センサーでは、ヒトグルタレドキシン-1(Grx1)がroGFP29,10のN末語に融合されています。RoGFP2へのGrx1酵素の共有結合は、センサーの2つの大きな改善を提供する:それはGSH / GSSGグルタチオンレドックス対(図1)に特異的なセンサー応答を作り、少なくとも100,0009の倍によってGSSGとroGFP2の間の平衡化を加速する。従って、Grx1-roGFP2は細胞グルタチオン酸化還元電位の特異的かつ動的なイメージングを可能にする。

Grx1-roGFP2イメージングは、広視野蛍光顕微鏡、回転ディスク共焦点顕微鏡、レーザー走査型共焦点顕微鏡など、幅広い顕微鏡で行うことができます。一次ニューロンにおけるセンサの発現は、リポフェクション11、DNA/リン酸カルシウム共沈12、ウイルス媒介遺伝子導入、または細胞源としてのトランスジェニック動物の使用を含む様々な方法によって達成することができる(図2)。この記事では、AAV1およびAAV2キャプシドタンパク質1:1比を含む擬似型組換えアデノ関連ウイルス(rAAV)を使用した。このベクターを使用すると、最大センサ発現は、通常、感染後4〜5日に達し、少なくとも2週間安定した状態を保ちます。マウスやラットの一次海馬および皮質ニューロンでGrx1-roGFP2を使用しました。

本稿では、一次ラット海馬および皮質ニューロンにおけるミトコンドリア標的Grx1-roGFP2のrAAV媒介発現を用いて、基底ミトコンドリアグルタチオンレドックスの状態とその急性摂動を評価する。(i)レーザースキャン共焦点顕微鏡の設定を最適化する方法、(ii)ライブイメージング実験を実行し、(iii)FIJIを使用してデータを分析する方法についての詳細な手順を備えた共焦点ライブイメージング用のプロトコルが提供されています。

Protocol

すべての動物実験は、欧州議会の理事会指令2010/63/EUを含む国家および制度的ガイドラインに準拠し、完全な内務省の倫理的承認を得ました(ハイデルベルク大学動物福祉事務所とレジエルングスプラエシジウム・カールスルーエ校、ライセンスT14/21およびT13/21)。一次海馬および皮質ニューロンは、標準的な手順に従って新生児マウスまたはラットの子犬から調製され、前述の13</…

Representative Results

成長因子離脱後の定常ミトコンドリア酸化還元状態の違いの定量化ミトコンドリア酸化還元状態における定常状態差の定量化を実証するために、標準培地で増殖した一次ニューロンを、イメージング前に48時間の成長因子なしで培養したニューロンと比較した。成長因子離脱は、72 h16後のアポトーシス神経細胞死をもたらす。細胞を48時間後に画像化し、これ…

Discussion

ミトコンドリアレドックス状態の定量的および動的測定は、ミトコンドリアおよび細胞生理に関する重要な情報を提供する。活性酸素種「酸化ストレス」または「酸化ストレス」を検出するいくつかのフッ素化化学プローブが利用可能です。しかし、後者の用語は明確に定義されておらず、しばしば特異性9,17,18を欠いて?…

Divulgations

The authors have nothing to disclose.

Acknowledgements

この作品はドイツ・フォルシュングスゲミンシャフト(BA 3679/5-1;3679/5-1;)2289の場合:BA 3679/4-2)。A.K.はエラスムス+フェローシップによってサポートされています。アイリス・ブンスリ=エーレット、リタ・ロズナー、アンドレア・シュリックサップの原発ニューロンの調製に感謝します。私たちは、pLPCX-ミト-Grx1-roGFP2を提供してくれたトビアス・ディック博士に感謝します。 図4 に示す実験は、ハイデルベルク大学ニコンイメージングセンターで行われました。 図2 は BioRender.com で調製した。

Materials

reagents
Calcium chloride (CaCl2·2H2O) Sigma-Aldrich C3306
Diamide (DA) Sigma-Aldrich D3648
Dithiothreitol (DTT) Carl Roth GmbH 6908.1
Glucose (2.5 M stock solution) Sigma-Aldrich G8769
Glucose Sigma-Aldrich G7528
Glycine neoFroxx GmbH LC-4522.2
HEPES (1 M stock solution) Sigma-Aldrich 15630-080
HEPES Sigma-Aldrich H4034
Magnesium chloride (MgCl2·6H2O) Sigma-Aldrich 442611-M
N-methyl-D-aspartate (NMDA) Sigma-Aldrich M3262
Potassium chloride (KCl) Sigma-Aldrich P3911
Sodium chloride (NaCl) neoFroxx GmbH LC-5932.1
Sodium pyruvate (0.1 M stock solution) Sigma-Aldrich S8636
Sodium pyruvate Sigma-Aldrich P8574
Sucrose Carl Roth GmbH 4621.1
Tetramethylrhodamine ethyl ester perchlorate (TMRE) Sigma-Aldrich 87917
equipment
imaging chamber Life Imaging Services (Basel, Switzerland) 10920 Ludin Chamber Type 3 for Ø12mm coverslips
laser scanning confocal microscope, microscope Leica DMI6000
laser scanning confocal microscope, scanning unit Leica SP8
peristaltic pump VWR PP1080 181-4001
spinning disc confocal microscope, camera Hamamatsu C9100-02 EMCCD
spinning disc confocal microscope, incubationsystem TokaiHit INU-ZILCF-F1
spinning disc confocal microscope, microscope Nikon Ti microscope
spinning disc confocal microscope, scanning unit Yokagawa CSU-X1
software
FIJI https://fiji.sc
StackReg plugin https://github.com/fiji-BIG/StackReg/blob/master/src/main/java/StackReg_.java
TurboReg plugin https://github.com/fiji-BIG/TurboReg/blob/master/src/main/java/TurboReg_.java

References

  1. Roede, J. R., Go, Y. M., Jones, D. P. Redox equivalents and mitochondrial bioenergetics. Methods in Molecular Biology. 810, 249-280 (2012).
  2. Turrens, J. F. Mitochondrial formation of reactive oxygen species. Journal of Physiology. 552, 335-344 (2003).
  3. Lin, M. T., Beal, M. F. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature. 443 (7113), 787-795 (2006).
  4. Manfredi, G., Beal, M. F. The role of mitochondria in the pathogenesis of neurodegenerative diseases. Brain Pathology. 10 (3), 462-472 (2000).
  5. Mari, M., Morales, A., Colell, A., Garcia-Ruiz, C., Fernandez-Checa, J. C. Mitochondrial glutathione, a key survival antioxidant. Antioxidants & Redox Signaling. 11 (11), 2685-2700 (2009).
  6. Murphy, M. P. Mitochondrial thiols in antioxidant protection and redox signaling: distinct roles for glutathionylation and other thiol modifications. Antioxidants & Redox Signaling. 16 (6), 476-495 (2012).
  7. Dooley, C. T., et al. Imaging dynamic redox changes in mammalian cells with green fluorescent protein indicators. Journal of Biological Chemistry. 279 (21), 22284-22293 (2004).
  8. Hanson, G. T., et al. Investigating mitochondrial redox potential with redox-sensitive green fluorescent protein indicators. Journal of Biological Chemistry. 279 (13), 13044-13053 (2004).
  9. Gutscher, M., et al. Real-time imaging of the intracellular glutathione redox potential. Nature Methods. 5 (6), 553-559 (2008).
  10. Morgan, B., Sobotta, M. C., Dick, T. P. Measuring E(GSH) and H2O2 with roGFP2-based redox probes. Free Radical Biology & Medicine. 51 (11), 1943-1951 (2011).
  11. Marwick, K. F. M., Hardingham, G. E. Transfection in primary cultured neuronal cells. Methods in Molecular Biology. 1677, 137-144 (2017).
  12. Kohrmann, M., et al. convenient, and effective method to transiently transfect primary hippocampal neurons. Journal of Neuroscience Research. 58 (6), 831-835 (1999).
  13. Depp, C., Bas-Orth, C., Schroeder, L., Hellwig, A., Bading, H. Synaptic activity protects neurons against calcium-mediated oxidation and contraction of mitochondria during excitotoxicity. Antioxidants & Redox Signaling. 29 (12), 1109-1124 (2018).
  14. Hauck, B., Chen, L., Xiao, W. Generation and characterization of chimeric recombinant AAV vectors. Molecular Therapy. 7 (3), 419-425 (2003).
  15. Brand, M. D., Nicholls, D. G. Assessing mitochondrial dysfunction in cells. Biochemical Journal. 435 (2), 297-312 (2011).
  16. Zhang, S. J., et al. Nuclear calcium signaling controls expression of a large gene pool: identification of a gene program for acquired neuroprotection induced by synaptic activity. PLoS Genetics. 5 (8), 1000604 (2009).
  17. Winterbourn, C. C. The challenges of using fluorescent probes to detect and quantify specific reactive oxygen species in living cells. Biochimica et Biophysica Acta. 1840 (2), 730-738 (2014).
  18. Sies, H. Oxidative stress: a concept in redox biology and medicine. Redox Biology. 4, 180-183 (2015).
  19. Lukyanov, K. A., Belousov, V. V. Genetically encoded fluorescent redox sensors. Biochimica et Biophysica Acta. 1840 (2), 745-756 (2014).
  20. Nietzel, T., et al. Redox-mediated kick-start of mitochondrial energy metabolism drives resource-efficient seed germination. Proceedings of the National Academy of Sciences of the United States of America. 117 (1), 741-751 (2020).
  21. Albrecht, S. C., et al. Redesign of genetically encoded biosensors for monitoring mitochondrial redox status in a broad range of model eukaryotes. Journal of Biomolecular Screening. 19 (3), 379-386 (2014).
  22. Albrecht, S. C., Barata, A. G., Grosshans, J., Teleman, A. A., Dick, T. P. In vivo mapping of hydrogen peroxide and oxidized glutathione reveals chemical and regional specificity of redox homeostasis. Cell Metabolism. 14 (6), 819-829 (2011).
  23. Breckwoldt, M. O., et al. Multiparametric optical analysis of mitochondrial redox signals during neuronal physiology and pathology in vivo. Nature Medicine. 20 (5), 555-560 (2014).
  24. Ricke, K. M., et al. Mitochondrial dysfunction combined with high calcium load leads to impaired antioxidant defense underlying the selective loss of nigral dopaminergic neurons. Journal of Neuroscience. 40 (9), 1975-1986 (2020).
  25. Bjornberg, O., Ostergaard, H., Winther, J. R. Mechanistic insight provided by glutaredoxin within a fusion to redox-sensitive yellow fluorescent protein. Biochimie. 45 (7), 2362-2371 (2006).
  26. Shokhina, A. G., et al. Red fluorescent redox-sensitive biosensor Grx1-roCherry. Redox Biology. 21, 101071 (2019).
check_url/fr/63073?article_type=t

Play Video

Citer Cet Article
Katsalifis, A., Casaril, A. M., Depp, C., Bas-Orth, C. Live Imaging of the Mitochondrial Glutathione Redox State in Primary Neurons using a Ratiometric Indicator. J. Vis. Exp. (176), e63073, doi:10.3791/63073 (2021).

View Video