Este protocolo descreve o procedimento de dissecção, condição cultural e imagem ao vivo de um sistema de explant antena-cérebro para o estudo do conjunto do circuito olfativo.
~Os neurônios são precisamente interconectados para formar circuitos essenciais para a função adequada do cérebro. O sistema olfativo Drosophila fornece um excelente modelo para investigar esse processo, uma vez que 50 tipos de neurônios receptores olfativos (ORNs) das antenas e palpas maxilares projetam seus axônios a 50 glomeruli identificáveis no lobo antena e formam conexões sinápticas com dendritos de 50 tipos de neurônios de projeção de segunda ordem (PNs). Estudos anteriores se concentraram principalmente na identificação de moléculas importantes que regulam o direcionamento preciso no circuito olfativo usando tecidos fixos. Aqui, um sistema de explant antennae-cérebro que recapitula os principais marcos de desenvolvimento da montagem do circuito olfativo na cultura é descrito. Através da dissecação da cutícula externa e limpeza de corpos de gordura opacos que cobrem o cérebro pupal em desenvolvimento, imagens de alta qualidade de neurônios únicos de cérebros vivos podem ser coletadas usando microscopia de dois fótons. Isso permite imagens de lapso de tempo de um único axônio ORN direcionado a partir de tecido vivo. Essa abordagem ajudará a revelar importantes contextos biológicos celulares e funções de genes importantes previamente identificados e identificar mecanismos que sustentam o processo dinâmico de montagem do circuito.
Os neurônios são precisamente interligados para formar circuitos essenciais para a função adequada do cérebro. Por mais de 100 anos, os neurocientistas têm tentado entender como os neuritos se estendem em direção aos seus alvos intermediários e finais com extrema precisão. Como resultado, eles identificaram genes importantes que codificam pistas de orientação para o desenvolvimento de processos neuronais1. O sistema olfativo Drosophila fornece um excelente modelo para investigar esse processo desde os neurônios receptores olfativos (ORNs, os neurônios sensoriais primários) projetam-se para 50 glomeruli identificáveis com tamanho estereotipado, forma e posição relativa, onde formam conexões sinápticas com dendritos de 50 tipos de neurônios de projeção de segunda ordem (PNs), cada um dos quais envia dendritos para um dos 50 glomeruli2 (Figura 1A ). Portanto, é relativamente fácil identificar fenótipos mutantes na resolução sináptica (glomerular) no sistema olfativo de mosca. Isso levou a descobertas de genes importantes que regulam o conjunto do circuito olfativo3.
A montagem do circuito olfativo da mosca conta com processos de desenvolvimento temporal eespacialmente coordenados 3. ORNs e PNs adquirem destinos celulares distintos, que configuram o programa para suas especificidades de fiação. Em seguida, dendritos PN pré-padrão do lóbulo antena (Figura 1B). Os axônios de ORNs então circunavegam o lobo antena ipsilateral e cruzam a linha média do cérebro para alcançar o lobo antena contralateral. Posteriormente, os axônios ORN invadem os lobos ipsi e contralateral das antenas e formam sinapses com dendritos de seus PNs parceiros em glomeruli específico. Este modelo grosseiro para montagem de circuito olfativo foi proposto com base na caracterização de amostras fixas a partir de pontos de tempo intermediários durante o desenvolvimento. A baixa resolução temporal e a incapacidade de seguir os mesmos processos neuronais através do desenvolvimento do tecido fixo limitam a compreensão mecanicista do processo de montagem do circuito.
É tecnicamente desafiador viver os processos orn e PN in vivo, uma vez que o processo de fiação ocorre na primeira metade da fase pupal quando o lobo antena é cercado por corpo de gordura opaco dentro da caixa pupal. É, portanto, impossível imaginar diretamente o circuito olfativo em desenvolvimento a partir de pupas intactas. Tecidos dissecados cultivados ex vivo podem contornar a opacidade tecidual e têm sido usados com sucesso para estudar o desenvolvimento neural 4,5,6. O desafio de usar uma estratégia de cultura ex vivo ex vivo semelhante para estudar a fiação neuronal no cérebro pupal é se ele recapitula o neurônio preciso direcionado em uma condição cultural. Com base em uma condição de cultura ex vivo relatada anteriormente para o complexo olho-cérebro7, uma explanta que contém todo o cérebro pupal, antenas e os nervos antenas de conexão intactos foi recentemente desenvolvido, que retém alvo preciso do circuito olfativo e pode ser submetido a imagens ao vivo baseadas em microscopia de dois fótons por até 24 h na frequência de cada 20 min8 . Aqui, um protocolo detalhado da cultura explant e imagem é descrito. O sistema de explant fornece um método poderoso para estudar a montagem de circuito olfativo e, potencialmente, outros circuitos no cérebro central.
A explanta drosophila antennae-cérebro mantém o alvo normal do circuito olfativo. Notamos que o desenvolvimento é 2 vezes mais lento em relação ao in vivo. Nota-se que o sistema de explant não retém palp maxilar, que hospeda seis tipos de ORNs. Para garantir que o desenvolvimento normal seja recapitulado ex vivo, o alongamento dos nervos antenas precisa ser evitado durante a dissecação da explant. Durante a cultura ex vivo , o crescimento das bactérias geralmente cau…
The authors have nothing to disclose.
Agradecemos a N. Özel e R. Hiesinger por seus conselhos sobre a cultura explant; M. Wagner para ajuda técnica da microscopia de dois fótons; D.J. Luginbuhl para geração de moscas transgênicas; D. Friedmann para sugestões de análise de software fiji; Y. Ge para assistência no trabalho de mosca; C. McLaughlin e K.K.L. Wong para comentários sobre o manuscrito. L.L. é um investigador do Instituto Médico Howard Hughes. Este trabalho foi apoiado pelos Institutos Nacionais de Saúde 1K99DC01883001 (para T.L.) e R01-DC005982 (para L.L.).
20-hydroxyecdysone | Sigma | H5142 | |
Chameleon Ti:Sapphire laser | Coherent | Coherent MRU X1 | |
Fetal Bovine Serum | Thermo Fisher Scientific | 10082147 | |
Human insulin | Thermo Fisher Scientific | 12585014 | |
Imaging software | Prairie | ||
Micro Scissors | World Precision Instruments | 501778 | |
Minutien Pins | Fine Science Tools | 26002-10 | |
Oxygen cylinder | Praxair | OX M-E | |
Penicillin-Streptomycin | Thermo Fisher Scientific | 15140122 | |
Schneider’s Drosophila Medium | Thermo Fisher Scientific | 21720024 | |
SYLGARD 184 Silicone Elastomer | Thermo Fisher Scientific | NC0162601 | |
Two-photon microscopy | Bruker | ||
water immerse objective (20X) | Zeiss | 421452-9800-000 |