This protocol describes the dissection procedure, culture condition, and live imaging of an antennae-brain explant system for the study of the olfactory circuit assembly.
~Neurons are precisely interconnected to form circuits essential for the proper function of the brain. The Drosophila olfactory system provides an excellent model to investigate this process since 50 types of olfactory receptor neurons (ORNs) from the antennae and maxillary palps project their axons to 50 identifiable glomeruli in the antennal lobe and form synaptic connections with dendrites from 50 types of second-order projection neurons (PNs). Previous studies mainly focused on identifying important molecules that regulate the precise targeting in the olfactory circuit using fixed tissues. Here, an antennae-brain explant system that recapitulates key developmental milestones of olfactory circuit assembly in culture is described. Through dissecting the external cuticle and cleaning opaque fat bodies covering the developing pupal brain, high quality images of single neurons from live brains can be collected using two-photon microscopy. This allows time-lapse imaging of single ORN axon targeting from live tissue. This approach will help reveal important cell biological contexts and functions of previously identified important genes and identify mechanisms underpinning the dynamic process of circuit assembly.
Neurons are precisely interconnected to form circuits essential for the proper function of the brain. For over 100 years, neuroscientists have been trying to understand how neurites extend toward their intermediate and final targets with extreme precision. As a result, they have identified important genes that encode guidance cues for developing neuronal processes1. The Drosophila olfactory system provides an excellent model to investigate this process since olfactory receptor neurons (ORNs, the primary sensory neurons) project to 50 identifiable glomeruli with stereotypical size, shape, and relative position, where they form synaptic connections with dendrites from 50 types of second-order projection neurons (PNs), each of which send dendrites to one of the 50 glomeruli2 (Figure 1A). Therefore, it is relatively easy to identify mutant phenotypes at synaptic (glomerular) resolution in the fly olfactory system. This led to discoveries of important genes that regulate olfactory circuit assembly3.
The assembly of the fly olfactory circuit relies on temporally and spatially coordinated developmental processes3. ORNs and PNs acquire distinct cell fates, which set up the program for their wiring specificities. Next, PN dendrites prepattern the antennal lobe (Figure 1B). The axons of ORNs then circumnavigate the ipsilateral antennal lobe and cross the midline of the brain to reach the contralateral antennal lobe. Subsequently, ORN axons invade both ipsi- and contralateral antennal lobes and form synapses with dendrites of their partner PNs in specific glomeruli. This coarse model for olfactory circuit assembly was proposed based on the characterization of fixed samples from intermediate time points during the development. The poor temporal resolution and inability to follow the same neuronal processes across development from fixed tissue limit the mechanistic understanding of the circuit assembly process.
It is technically challenging to live image ORN and PN processes in vivo since the wiring process occurs in the first half of the pupal stage when the antennal lobe is surrounded by opaque fat body inside the pupal case. It is, therefore, impossible to directly image the developing olfactory circuit from intact pupae. Dissected tissues cultured ex vivo can circumvent tissue opacity and have been successfully used to study neural development4,5,6. The challenge of using a similar ex vivo explant culture strategy to study neuronal wiring in the pupal brain is whether it recapitulates the precise neuron targeting in a culture condition. Based on a previously reported ex vivo culture condition for the fly eye-brain complex7, an explant that contains the whole pupal brain, antennae, and the connecting antennal nerves intact has been recently developed, which retains precise targeting of the olfactory circuit and can be subjected to two-photon microscopy-based live imaging for up to 24 h at the frequency of every 20 min8. Here, a detailed protocol of the explant culture and imaging is described. The explant system provides a powerful method to study the assembly of olfactory circuit and potentially other circuits in the central brain.
1. Preparation of reagents
NOTE: All the steps in this protocol are carried out at room temperature (20-25 °C) unless explained otherwise.
2. Explant dissection
3. Two-photon microscopy-based live imaging
4. Image processing
ORN axons arrive at the antennal lobe between 18 h and 36 h APF. They then navigate the antennal lobe, cross the midline, and innervate the glomeruli. Video 1 is a representative video showing the entire process for several individually identifiable axons, taken at the frequency of every 20 min for 24 h. Before registration using TurboReg, the axons exhibit some lateral drifting as the brain develops (first half of the video). After registration, the drifting is corrected (second half of the video).
To separate a few ORN axons from the same explant, one example is shown in Figure 5. Following the procedure in step 4.3, VA1d and VA1v axons from explant shown in Figure 5A were extracted to generate a new z stack image with only these two axons (Figure 5B). Similarly, VM2 and VM3 axons (Figure 5B') and DL2 axon (Figure 5B'') were extracted. Figure 5C shows a merge of images in Figure 5B-B'' with pseudocolors. The genetic identities of each ORN axons were revealed by immunostaining of a neuropil marker N-cadherin of the fixed explant (Figure 5D,E).
Figure 1: Structure of fly olfactory circuit. (A) An adult fly head is shown with one ORN from the right antennae (green) sending its axon to both antennal lobes (ALs) in the brain and forming synaptic connection in a specific glomerulus with dendrites of PNs (red) in the ipsilateral and contralateral ALs. Dashed vertical line indicates midline in this and subsequent diagrams and images. (B) Diagram showing the olfactory circuit development. (1) PN dendrites first innervate a region in the antennal lobe (red). ORN axons reach the antennal lobes in the brain. (2) ORN axons take either a dorsolateral (green) or ventromedial (blue) trajectory to circumnavigate the antennal lobe. (3) ORN axons cross the midline. (4) ORN axons innervate glomeruli in the antennal lobe. Please click here to view a larger version of this figure.
Figure 2: Preparation of the imaging chamber for the explant. (A) Lay a layer of silicone elastomer (~0.5 cm) at the bottom of a 60 mm Petri dish. (B–B') Align pins on a tape and cut to ~2 mm long using a pair of scissors. (C) Pin the micro pins on the silicone elastomer layer of the culture plate. Please click here to view a larger version of this figure.
Figure 3: The dissection procedure for the antennae-brain explant. (A) Attach the ventral side of a paper tissue-dried pupa on a double-sided tape on a glass slide. (B–C) Use forceps to cut the external brown cuticle to expose the pupa inside. (D) Transfer the pupa to a dissection well with oxygenated full medium. (E–G) Carefully separate the pupal trunk from the head using microscissors. (H) Cut the pieces of semitransparent cuticle covering the dorsal and ventral sides of the brain. Keep some cuticle on the anterior and lateral sides of the brain to retain connections between the retina, antennae, and brain. (H') Avoid severing the antennal nerve during this step. (I) Clean the fat body covering the brain by gently pipetting. (J) Sever one or two antennal nerve(s) using microscissors in certain experiments. (K) Place a droplet of oxygenated full medium on the surface of the culture plate. Transfer the dissected explant using a wide tip pipette tip. (L) Use forceps to pin the two optic lobes of the explant on the silicone elastomer layer. Please click here to view a larger version of this figure.
Figure 4: Time-lapse imaging of single ORN axon targeting from an explant. (A) Select an explant with a few ORN axons just reaching the antennal lobe. Estimate the shape of two antennal lobes by the curvature of the axons and center the antennal lobes in the imaging field. (B) Set the imaging region along the z axis. Consider that the antennal lobe will shift upward as the brain grows and develops. Please click here to view a larger version of this figure.
Figure 5: Extract single ORNs and reveal their glomerular identities. (A) A maximum projection image of an explant with 5-10 single ORN axons using two-photon microscopy with 20x objective and 3x zoom in. (B–B'') 1-2 single axons are extracted from (A) by manually creating masks in image sections from the raw image data. (C) Merge the images of (B-B'') with each axon pseudo-colored differently. (D–D') Maximum projection confocal images taken with 40x objective and 1.5x zoom. Explant shown in (A) was fixed followed by staining with anti-GFP and anti-N-cadherin (neuropil marker). Anterior and posterior halves of the antennal lobes are stacks separately in (D) and (D'). (E) Antennal lobe map shows extracted ORN axons in (B,C). Some images shown in this figure are modified from a prior study8. Please click here to view a larger version of this figure.
Video 1: Two-photon microscopy based time-lapse images show targeting of two ORN axons, before and after image registration. Please click here to download this Video.
The Drosophila antennae-brain explant retains normal targeting of the olfactory circuit. We did notice that the development is 2 times slower ex vivo compared to in vivo. It is noted that the explant system does not retain maxillary palp, which hosts six types of ORNs. To ensure normal development is recapitulated ex vivo, stretching of the antennal nerves needs to be avoided during explant dissection. During ex vivo culture bacteria growth usually causes arrested development of the olfactory circuit. Therefore, thorough sterilization of the culture dish and pins before imaging and keeping the imaging room clean and isolated is important.
This explant supports long-term two-photon microscopy based time-lapse imaging. Combined with a newly developed reporter for sparse labeling of single ORNs, the explant system allows high-resolution imaging from single axon terminus. This system is powerful to study the cell biological mechanisms underpinning the dynamic process of olfactory circuit assembly8. Although olfactory circuit development was shown here as an example, this system can potentially be expanded to studies of other circuits or other developmental processes in the developing central brain.
The explant maintains normal development in culture for at least 24 h, which can capture the entire process of ORN targeting. It enables researchers to reveal the genetic identity of single ORN axons through counter-staining with a neuropil marker post fixation, as the antennal lobe already develops obvious glomerular structure by the end of the culture. This strategy circumvents the problem of lacking specific genetic drivers for many ORN types at an early developmental stage to achieve imaging of specific types of ORNs using a pan-ORN driver.
To achieve higher spatiotemporal resolution, this explant system can be imaged using more advanced microscopy, the adaptive optics-lattice light-sheet microscopy (AO-LLSM). It has been shown that the AO-LLSM enables visualization of fine structures of axon terminals and scanning frequency at every 30 second per volume8,9,10,11. One advantage of the explant is its compatibility with Janelia Fluorophore dye12,13,14 labeling by incubating the explant expressing Halo-tag in specific neurons with dyes in the medium before imaging. It was noticed that incubating the explant with dye-containing medium results in much stronger labeling than feeding the larvae with the dye. This unique advantage allowed us to image axons at an early developmental stage that was hardly visualized by GFP labeling8.
In addition to time-lapse imaging, the explant system has other advantages. For example, it is possible to sever antennal nerves from the dissected explant unilaterally or bilaterally at specific developmental time points (step 2.8). This allows researchers to probe the requirement of ORN axons in the targeting of any neuron types in the olfactory circuit at distinct developmental steps. In particular unilateral antennal nerve severing assays, which cannot be achieved by traditional genetic manipulation, led to an interesting discovery that interaction between bilateral ORN axons is required for correct contralateral targeting of ORN axons8. Furthermore, the explant is cultured directly in medium instead of being embedded in agarose, therefore allowing fast delivery and wash out of some small molecules or drugs. Compared with genetic manipulation, drug treatment has the advantages of rapid effect and reversibility of the manipulation. It enables researchers to assess some essential processes for cells at later developmental stages by bypassing cell lethality or unhealthy issues due to constitutive disruption through genetic manipulations. It also helps visualization of subtle changes by comparing before and after drug treatment, and after drug washout.
The authors have nothing to disclose.
We thank N. Özel and R. Hiesinger for their advice on the explant culture; M. Wagner for technical help of the two-photon microscopy; D.J. Luginbuhl for generating transgenic flies; D. Friedmann for suggestions of Fiji software analysis; Y. Ge for assistance on fly work; C. McLaughlin and K.K.L. Wong for comments on the manuscript. L.L. is a Howard Hughes Medical Institute investigator. This work was supported by National Institutes of Health grants 1K99DC01883001 (to T.L.) and R01-DC005982 (to L.L.).
20-hydroxyecdysone | Sigma | H5142 | |
Chameleon Ti:Sapphire laser | Coherent | Coherent MRU X1 | |
Fetal Bovine Serum | Thermo Fisher Scientific | 10082147 | |
Human insulin | Thermo Fisher Scientific | 12585014 | |
Imaging software | Prairie | ||
Micro Scissors | World Precision Instruments | 501778 | |
Minutien Pins | Fine Science Tools | 26002-10 | |
Oxygen cylinder | Praxair | OX M-E | |
Penicillin-Streptomycin | Thermo Fisher Scientific | 15140122 | |
Schneider’s Drosophila Medium | Thermo Fisher Scientific | 21720024 | |
SYLGARD 184 Silicone Elastomer | Thermo Fisher Scientific | NC0162601 | |
Two-photon microscopy | Bruker | ||
water immerse objective (20X) | Zeiss | 421452-9800-000 |