Summary

Надежная изоляция микрососудов центральной нервной системы в пяти группах позвоночных

Published: January 12, 2020
doi:

Summary

Целью данного протокола является изоляция микрососудов из нескольких областей центральной нервной системы лиссенцефалических и гиренцефалических позвоночных.

Abstract

Изоляция микрососудов из центральной нервной системы (ЦНС) обычно осуществляется путем объединения корковых тканей от нескольких животных, чаще всего грызунов. Такой подход ограничивает анализ свойств гематоэнцефалического барьера (BBB) коре и не позволяет проводить индивидуальное сравнение. Этот проект фокусируется на разработке метода изоляции, который позволяет сравнивать нервно-сосудистую единицу (НВУ) из нескольких областей ЦНС: коры головного мозга, мозжечка, зрительного толка, гипоталамуса, гипофиза, ствола головного мозга и спинного мозга. Кроме того, этот протокол, первоначально разработанный для образцов мурин, был успешно адаптирован для использования в тканях ЦНС от малых и крупных позвоночных видов, из которых мы также можем изолировать микрососуды из белого вещества полушария мозга. Этот метод, в паре с иммуномаркировкой, позволяет количественно определить экспрессию белка и статистическое сравнение между людьми, типом ткани или лечением. Мы доказали эту применимость, оценив изменения экспрессии белка во время экспериментального аутоиммунного энцефаломиелита (EAE), моринмодели нейровоспалительных заболеваний, рассеянного склероза. Кроме того, микрососуды, изолированные этим методом, могут быть использованы, в частности, для таких приложений, как qPCR, RNA-seq и Western blot. Несмотря на то, что это не первая попытка изолировать микрососуды ЦНС без использования ультрацентрифюгации или ферментативной диссоциации, она уникальна по своей искусности для сравнения отдельных лиц и нескольких регионов ЦНС. Таким образом, это позволяет исследует целый ряд различий, которые в противном случае могут оставаться неясными: части ЦНС (кора, мозжечок, оптическая доля, ствол мозга, гипоталамус, гипофиза и спинного мозга), тип ткани ЦНС (серое или белое вещество), лица, экспериментальных групп лечения и видов.

Introduction

Наш мозг является самым важным органом в нашем теле. По этой причине, сохраняя гомеостаз мозга, несмотря на внешние факторы, которые могут вызвать отклонение от нормальной жизни является приоритетом. По мнению некоторых ученых, около 400-500 миллионов лет назад1, позвоночных животных разработали то, что мы теперь знаем, как гематоэнцефалический барьер (BBB)2,3. Этот защитный “забор” оказывает наибольшее влияние на центральную нервную систему (ЦНС) гомеостаза и функции, плотно регулируя транспорт ионов, молекул и клеток между кровью и ЦНС parenchyma. Когда BBB нарушается, мозг становится восприимчивым к токсическим воздействием, инфекции и воспаления. Таким образом, дисфункция BBB связана со многими, если не со всеми, неврологическими и нейроразвития расстройств4,5,6.

Сложная функция BBB приписывается уникальной микроваскулярной ЦНС, соответствующей нервно-сосудистому блоку (НВУ)2,3. Высокоспециализированные эндотелиальные клетки, перициты и астроцитарные конечные ноги являются клеточными компонентами NVU2,3. Внеклеточная матрица, генерируемая этими клетками, также имеет важное значение для физиологии NVU и BBB2,3. Хотя основные клеточные и молекулярные компоненты НВУ сохраняются среди позвоночных, неоднородность сообщается среди заказов и видов7,8. Тем не менее, технические ограничения препятствуют нашей способности в полной мере рассмотреть эти различия в нейробиологии, биомедицинских или трансляционных исследований.

Из-за этого мы расширили метод микрососуд-изоляцию цНС, чтобы сделать его применимым к многочисленным видам из всех пяти позвоночных групп: рыбам, земноводным, рептилиям, птицам и млекопитающим. Протокол описан для использования на мелко-лиссенцефалических и крупногирецефалических позвоночных, в том числе видов с переводной релевантности9. Кроме того, мы включаем другие регионы ЦНС, ранее не исследованные в этом контексте, но имеющие отношение к нейрофизиологии и с огромными клиническими последствиями: гипоталамус, гипофиз и белое вещество. Наконец, мы проверили способность этого метода изоляции в качестве надежного инструмента для выявления изменений в экспрессии белка вдоль NVU и / или BBB9,10,11. В качестве доказательства концепции мы показали, как определить изменения в экспрессии VCAM-1 и JAM-B во время EAE с помощью метода изоляции с последующей иммунофлуоресценцией.

Protocol

Все процедуры настоящего исследования соответствуют руководящим принципам, установленным Калифорнийским университетом (UC), Комитетом по институциональному уходу и использованию животных Дэвиса (IACUC). Уход за животными в UC Davis регулируется несколькими независимыми ресурсами и с 1966 год…

Representative Results

Микрососуды, изолированные от минины ЦНС, показали все внутренние клеточные компоненты нервно-сосудистого блока2,3. Использование либо тромбоцитов эндотелиальной клетки адгезионной молекулы-1 (PECAM, также известный как CD31) или изолектин I…

Discussion

BBB включает в себя уникальные свойства микроваскулярных эндотелиальных клеток мозга в сочетании с сложной архитектурой плотных, придерживающихся, “пег-розетки” – узлов, и адгезионные бляшки, критически важные для ЦНС гомеостаза2,3,19. Сво…

Divulgations

The authors have nothing to disclose.

Acknowledgements

Д-р Круз-Оренго был поддержан Калифорнийским университетом, Дэвис, Школа ветеринарной медицины Запуска средств.

Materials

10X PBS ThermoFisher BP39920 Used for blocking and antibody diluent.
20% PFA Electron Microscopy Sciences 15713-S Used as fixative (4% PFA)
70,000 MW Dextran Millipore Sigma 9004-54-0 Used for MV-2 solution
Adson Forceps Fine Science Tools (FST) 11006-12 Used for removal of muscle and skin
Adson Forceps, student quality FST 91106-12 Same as above but cheaper
Bovine serum albumin (BSA) Millipore Sigma A7906-100G Used for MV-3 solution, blocking and antibody diluent
Corning 100 μm Cell strainer Millipore Sigma CLS431752-50EA
Corning 70 μm Cell strainer Millipore Sigma CLS431751-50EA
Corning Deskwork low-binding tips Millipore Sigma CLS4151 Same as below but cheaper.
Cultrex Poly-D-Lysine R&D 3439-100-01 Used for slide coating
Donkey anti-Goat IgG-ALEXA 555 Thermo A21432 Used as secondary antibody. Recommended dilution of 1:200.
Donkey anti-Mouse IgG-ALEXA 488 Thermo A21202 Used as secondary antibody. Recommended dilution of 1:200.
Donkey anti-Rabbit IgG-ALEXA 488 Thermo A21206 Used as secondary antibody. Recommended dilution of 1:200.
Donkey anti-Rabbit IgG-ALEXA 647 Thermo A31573 Used as secondary antibody. Recommended dilution of 1:200.
Donkey anti-Rat IgG-DyLight 650 Thermo SA5-10029 Used as secondary antibody. Recommended dilution of 1:200.
Double-Pronged Tissue Pick FST 18067-11 Used for removal of meninges and choroid plexus
Dumont #3c Forceps FST 11231-20 Used for more delicate and/or small CNS tissue handling (like pituitary)
Dumont #7 Forceps FST 11274-20 Used for CNS tisssue dissection and handling
Dumont #7 Forceps, student FST 91197-00 Same as above but cheaper
ep Dualfilter T.I.P.S. LoRetention Tips Eppendorf 22493008 Better quality than the tips above (more expensive).
Extra Fine Graefe Forceps, serrated FST 11151-10 Used for bone removal
Fine Scissors, sharp FST 14060-09 Used for removal of pig and macaque dural sac
Glass Pestle 1.5 mL Microcentrifuge Tube Tissue Grinder Homogenizer, Pack of 10 Chang Bioscience Inc. (eBay) GP1.5_10 Used for small vetebrate hypothalus and pituitary.
Goat anti-CXCL12, biotinylated PeproTech 500-P87BGBT Used as primary antibody on CNS microvessels from all specimens. Recommended dilution: 1:20.
Goat anti-JAM-B R&D AF1074 Used as primary antibody to assess neuroinflammation. Recommended concentration: 5 μg/mL.
Goat anti-Mouse IgG-ALEXA 488 Thermo A11001 Used as secondary antibody. Recommended dilution of 1:200.
Goat anti-Mouse IgG-ALEXA 555 Thermo A21424 Used as secondary antibody. Recommended dilution of 1:200.
Goat anti-PDGFRβ R&D AF1042 Used as primary antibody on CNS microvessels from all specimens. Recommended concentration: 5 μg/mL.
Goat anti-Rabbit IgG-ALEXA 555 Thermo A21249 Used as secondary antibody. Recommended dilution of 1:200.
Goat anti-Rabbit IgG-DyLight 488 Thermo 35552 Used as secondary antibody. Recommended dilution of 1:200.
Goat anti-Rat IgG-DyLight 650 Thermo SA5-10021 Used as secondary antibody. Recommended dilution of 1:200.
Graefe Forceps, curved tip, 1X2 teeth FST 11054-10 Use for nylon filter net holding and shaking
HBSS, 1X buffer with calcium and magnesium Corning 21-022-CM Used for MV-1 solution
HEPES, 1M liquid buffer Corning 25-060-CI Used for MV-1 solution
Isolectin GS-IB4-Biotin-XX ThermoFisher Scientific (Thermo) I21414 Glycoprotein isolated from legume Griffonia simplicifolia that binds D-galactosyl residues of endothelial cell glycocalysx. Used for avian and porcine CNS microvessels. Recommended concentration: 5 μg/mL.
LaGrange Scissors, serrated FST 14173-12 Used for skull dissection and laminectomy (except pig and macaque)
Millicell EZ slide 8-well unit Millipore Sigma PEZGS0816
Mouse anti-CLDN5 Thermo 35-2500 Used as primary antibody on CNS microvessels from all specimens. Recommended concentration: 5 μg/mL.
Mouse anti-GGT1 Abcam ab55138 Used as primary antibody on CNS microvessels from all specimens. Recommended concentration: 5 μg/mL.
Mouse anti-Human CD31 R&D BBA7 Used as primary antibody on primate CNS microvessels. Recommended concentration: 16.5 μg/mL.
Mouse anti-NFM Thermo RMO-270 Used as primary antibody on CNS microvessels from all specimens. Recommended concentration: 5 μg/mL.
Mouse anti-αSMA Thermo MA5-11547 Used as primary antibody on CNS microvessels from all specimens. Recommended dilution of 1:200.
Nylon Filter Net, roll Millipore Sigma NY6000010 Laser-cut to 13 mm diameter filter net discs. Used for small vetebrate hypothalus and pituitary.
Nylon Filter Nets, 25 mm Millipore Sigma NY2002500 Used on most small vertebrates CNS tissues, except hypothalamus and pituitary. Used for macaque and pig hypothalamus and pituitary.
Nylon Filter Nets, 47 mm Millipore Sigma NY2004700 Used for macaque and pig CNS tissues, except hypothalamus and pituitary.
ProLong Gold antifade reagent with DAPI ThermoFisher P36935 Used to coverslip slides.
Rabbit anti-AQP4 Millipore Sigma A5971 Used as primary antibody on CNS microvessels from all specimens. Recommended dilution of 1:200.
Rabbit anti-LSR Millipore Sigma SAB2107967 Used as primary antibody on CNS microvessels from all specimens. Recommended concentration: 5 μg/mL.
Rabbit anti-NG2 Millipore Sigma AB5320 Used as primary antibody on CNS microvessels from all specimens. Recommended dilution of 1:200.
Rabbit anti-OSP Abcam ab53041 Used as primary antibody on CNS microvessels from all specimens. Recommended concentration: 1 μg/mL.
Rabbit anti-VE-Cadherin Abcam ab33168 Used as primary antibody on CNS microvessels from all specimens. Recommended concentration: 5 μg/mL.
Rabbit anti-ZO-1 Thermo 61-7300 Used as primary antibody on CNS microvessels from all specimens. Recommended concentration: 5 μg/mL.
Rat anti-CD31 Becton Dickinson BD 550274 Used as primary antibody for murine CNS microvessels. Recommended concentration: 5 μg/mL.
Rat anti-GFAP Thermo 13-0300 Used as primary antibody on CNS microvessels from all specimens. Recommended dilution of 1:200.
Rat anti-VCAM-1 Becton Dickinson BD 553329 Used as primary antibody to assess neuroinflammation. Recommended concentration: 5 μg/mL.
Sterile Ringer's Solution, Frog Aldon Corporation IS5066 Used for amfibian anesthesia
Streptavidin-ALEXA 555 Thermo S32355 Used as secondary antibody to label biotinylated primary antibodies. Recommended dilution of 1:500.
Streptavidin-ALEXA 647 Thermo S32357 Used as secondary antibody to label biotinylated primary antibodies. Recommended dilution of 1:500.
Surgical Scissors, sharp FST 14002-12 Used for removal of muscle and skin
Surgical Scissors, sharp-blunt FST 14001-16 Used for decapitation (except pig and macaque)
Swinnex Filter Holder, 13 mm Millipore Sigma SX0001300 Modified by laser-cut. Used for small vetebrate hypothalus and pituitary.
Swinnex Filter Holder, 25 mm Millipore Sigma SX0002500 Modified by laser-cut. Used on most small vertebrates CNS tissues, except hypothalamus and pituitary. Used for macaque and pig hypothalamus and pituitary.
Swinnex Filter Holder, 47 mm Millipore Sigma SX0004700 Modified by laser-cut. Used for macaque and pig CNS tissues, except hypothalamus and pituitary.
Triton X-100 ThermoFisher 50-165-7277 Used for blocking and antibody diluent.
Wheaton 120 Vac Overhead Stirrer VWR (Supplier DWK Life Sciences) 62400-904 (DWK #903475) Used for macaque and pig CNS tissues with 55 mL tissue grinder, except hypothalamus and pituitary.
Wheaton Potter-Elvehjem tissue grinder with PTFE pestle, 10 mL VWR (Supplier DWK Life Sciences) 14231-384 (DWK #357979) Used on most small vertebrates CNS tissues, except hypothalamus and pituitary. Used for macaque and pig hypothalamus and pituitary.
Wheaton Potter-Elvehjem tissue grinder with PTFE pestle, 55 mL VWR (Supplier DWK Life Sciences) 14231-372 (DWK #357994) Used for macaque and pig CNS tissues, except hypothalamus and pituitary.

References

  1. Bundgaard, M., Abbott, N. J. All vertebrates started out with a glial blood-brain barrier 4-500 million years ago. Glia. 56, 699-708 (2008).
  2. Daneman, R., Prat, A. The blood-brain barrier. Cold Spring Harbor Perspectives in Biology. 7, a020412 (2015).
  3. Obermeier, B., Verma, A., Ransohoff, R. M. The blood-brain barrier. Handbook of Clinical Neurology. 133, 39-59 (2016).
  4. Kealy, J., Greene, C., Campbell, M. Blood-brain barrier regulation in psychiatric disorders. Neuroscience Letters. , (2018).
  5. Sweeney, M. D., Kisler, K., Montagne, A., Toga, A. W., Zlokovic, B. V. The role of brain vasculature in neurodegenerative disorders. Nature Neuroscience. 21, 1318-1331 (2018).
  6. Sweeney, M. D., Zhao, Z., Montagne, A., Nelson, A. R., Zlokovic, B. V. Blood-Brain Barrier: From Physiology to Disease and Back. Physiological Reviews. 99, 21-78 (2019).
  7. Wilhelm, I., Nyul-Toth, A., Suciu, M., Hermenean, A., Krizbai, I. A. Heterogeneity of the blood-brain barrier. Tissue Barriers. 4, e1143544 (2016).
  8. O’Brown, N. M., Pfau, S. J., Gu, C. Bridging barriers: a comparative look at the blood-brain barrier across organisms. Genes & Development. 32, 466-478 (2018).
  9. Cruz-Orengo, L., et al. CXCR7 influences leukocyte entry into the CNS parenchyma by controlling abluminal CXCL12 abundance during autoimmunity. Journal of Experimental Medicine. 208, 327-339 (2011).
  10. Serres, S., et al. VCAM-1-targeted magnetic resonance imaging reveals subclinical disease in a mouse model of multiple sclerosis. FASEB Journal. 25, 4415-4422 (2011).
  11. Tietz, S., Engelhardt, B. Brain barriers: Crosstalk between complex tight junctions and adherens junctions. Journal of Cell Biology. 209, 493-506 (2015).
  12. Sohet, F., et al. LSR/angulin-1 is a tricellular tight junction protein involved in blood-brain barrier formation. Journal of Cell Biology. 208, 703-711 (2015).
  13. Cruz-Orengo, L., et al. Enhanced sphingosine-1-phosphate receptor 2 expression underlies female CNS autoimmunity susceptibility. Journal of Clinical Investigation. 124, 2571-2584 (2014).
  14. Dayton, J. R., Franke, M. C., Yuan, Y., Cruz-Orengo, L. Straightforward method for singularized and region-specific CNS microvessels isolation. Journal of Neuroscience Methods. 318, 17-33 (2019).
  15. Smyth, L. C. D., et al. Markers for human brain pericytes and smooth muscle cells. Journal of Chemical Neuroanatomy. 92, 48-60 (2018).
  16. Granberg, T., et al. In vivo characterization of cortical and white matter neuroaxonal pathology in early multiple sclerosis. Brain. 140, 2912-2926 (2017).
  17. Datta, G., et al. Neuroinflammation and its relationship to changes in brain volume and white matter lesions in multiple sclerosis. Brain. 140, 2927-2938 (2017).
  18. Tommasin, S., Gianni, C., De Giglio, L., Pantano, P. Neuroimaging Techniques to Assess Inflammation in Multiple Sclerosis. Neurosciences. 403, 4-16 (2019).
  19. Liebner, S., et al. Functional morphology of the blood-brain barrier in health and disease. Acta Neuropathologica. 135, 311-336 (2018).
  20. Cornford, E., Hyman, S. Localization of brain endothelial luminal and abluminal transporters with immunogold electron microscopy. NeuroRx. 2, 27-43 (2005).
  21. Boulay, A. C., Saubamea, B., Decleves, X., Cohen-Salmon, M. Purification of Mouse Brain Vessels. Journal of Visualized Experiments. , 53208 (2015).
  22. Paul, D., Cowan, A. E., Ge, S., Pachter, J. S. Novel 3D analysis of Claudin-5 reveals significant endothelial heterogeneity among CNS microvessels. Microvascular Research. , (2012).
  23. Munikoti, V. V., Hoang-Minh, L. B., Ormerod, B. K. Enzymatic digestion improves the purity of harvested cerebral microvessels. Journal of Neuroscience Methods. 207, 80-85 (2012).
  24. Yousif, S., Marie-Claire, C., Roux, F., Scherrmann, J. M., Decleves, X. Expression of drug transporters at the blood-brain barrier using an optimized isolated rat brain microvessel strategy. Brain Research. 1134, 1-11 (2007).
  25. Bourassa, P., Tremblay, C., Schneider, J. A., Bennett, D. A., Calon, F. Beta-amyloid pathology in human brain microvessel extracts from the parietal cortex: relation with cerebral amyloid angiopathy and Alzheimer’s disease. Acta Neuropathologica. 137, 801-823 (2019).
  26. Porte, B., et al. Proteomic and transcriptomic study of brain microvessels in neonatal and adult mice. PLoS One. 12, e0171048 (2017).

Play Video

Citer Cet Article
Yuan, Y., Dayton, J. R., Freese, M., Dorflinger, B. G., Cruz-Orengo, L. Reliable Isolation of Central Nervous System Microvessels Across Five Vertebrate Groups. J. Vis. Exp. (155), e60291, doi:10.3791/60291 (2020).

View Video