We have developed a whole-cortical electrocorticographic array for the common marmoset that continuously covers almost the entire lateral surface of cortex, from the occipital pole to the temporal and frontal poles. This protocol describes a chronic implantation procedure of the array in the epidural space of the marmoset brain.
Electrocorticography (ECoG) allows the monitoring of electrical field potentials from the cerebral cortex with high spatiotemporal resolution. Recent development of thin, flexible ECoG electrodes has enabled conduction of stable recordings of large-scale cortical activity. We have developed a whole-cortical ECoG array for the common marmoset. The array continuously covers almost the entire lateral surface of cortical hemisphere, from the occipital pole to the temporal and frontal poles, and it captures whole-cortical neural activity in one shot. This protocol describes a chronic implantation procedure of the array in the epidural space of the marmoset brain. Marmosets have two advantages regarding ECoG recordings, one being the homologous organization of anatomical structures in humans and macaques, including frontal, parietal, and temporal complexes. The other advantage is that the marmoset brain is lissencephalic and contains a large number of complexes, which are more difficult to access in macaques with ECoG, that are exposed to the brain surface.These features allow direct access to most cortical areas beneath the surface of the brain. This system provides an opportunity to investigate global cortical information processing with high resolutions at a sub-millisecond order in time and millimeter order in space.
Cognition requires the coordination of neural ensembles across widespread brain networks, particularly the neocortex that is well-developed in humans and believed to be involved in higher cognitive behaviors. However, how the neocortex achieves this cognitive behavior is an unsolved issue in the neuroscience field. Recent development of thin, flexible electrocorticographic (ECoG) electrodes enables conduction of stable recordings from large-scale cortical activity1. Fujii and colleagues have developed a whole-cortical ECoG array for macaque monkeys2,3. The array continuously covers almost the entire lateral cortex, from the occipital pole to the temporal and frontal poles, and captures whole-cortical neural activity in one shot. We have further developed this system for application in the common marmoset4,5, a small, new-world monkey with genetic manipulability6,7. This animal has several advantages compared to other species. The visual, auditory, somatosensory, motor, and frontal cortical areas of this species have been previously mapped and reported to have basic homologous organization to the same areas in humans and macaques8,9,10,11,12,13,14,15,16. Their brains are smooth, and most lateral cortical areas are exposed to the surface of the cortex, which is harder to access with ECoG in macaques. Based on these features, the marmoset is suitable for electrocorticographic studies. Furthermore, marmosets exhibit social behaviors and have been proposed to serve as a candidate model of human social behaviors17.
This protocol describes an epidural implantation procedure of the ECoG array on the whole lateral surface of the cortex in a common marmoset. It provides an opportunity to monitor large-scale cortical activity for primate cortical neuroscience, including sensory, motor, higher cognitive, and social domains.
This protocol has been performed on 6 common marmosets (4 males, 2 females; body weight = 320-470 g; age = 14-53 months). All procedures were carried out in accordance with the recommendations of the National Institutes of Health Guidelines for the Care and Use of Laboratory Animals. The protocol was approved by the RIKEN Ethical Committee (No. H28-2-221(3)). All surgical procedures were performed under anesthesia, and all efforts were made to minimize the number of animals used as well as their discomfort.
1. Preparation
2. Implantation of ECoG Array
NOTE: Withdraw ingestion of food and liquids greater than 4 h prior to surgery. Perform all surgical steps with aseptic technique using sterilized gloves and instruments.
3. Postoperative Treatment
NOTE: It typically takes 5 days for animals to recover completely from the surgery.
The whole-cortical ECoG array can simultaneously capture neuronal activity from the entirety of a hemisphere. Figure 4 shows examples of auditory evoked potentials (AEPs) from multiple auditory areas in an awake marmoset. ECoG recordings were conducted in passive listening conditions. Each marmoset was exposed to auditory stimuli, which consisted of randomized pure tones with 20 types of frequency. Then, we calculated AEPs by averaging ECoGs aligned with onsets of the tones. Different wave forms were observed from lower and higher auditory areas, which indicates that the spatial resolution of our ECoG array can capture different information processing in different cortical areas.
Figure 1: Preparation of an ECoG array. (A) 32 and 64 ECoG arrays (bottom left and right), a connector case (top left), and a front-end for the recording systems (top right). The "G" and "R" of each array indicate grand and reference electrodes, respectively. (B) Assembled ECoG array. (C) All gaps (red rectangles) should be sealed. Please click here to view a larger version of this figure.
Figure 2: An example of the craniotomy. (A) The thin gray and thick black lines indicate outlines of the ECoG array and the planned area of craniotomy, respectively. The crosses correspond to anchor holes. The circled number indicates the order of drilling. (B) An example CT image of the craniotomy. Please click here to view a larger version of this figure.
Figure 3: Localization of each electrode. (A) T2-weighted MRI, (B) CT, and (C) electrode locations on the atlas. The atlas used in this manuscript is the Woodward 3-D version based on the Hashikawa-atlas20, which is an MRI-cytoarchitectual map. Please click here to view a larger version of this figure.
Figure 4: Examples of auditory evoked potentials. (A) Auditory area of Monkey J. (B) Examples of AEPs. Electrodes located in different auditory areas show different wave forms. Please click here to view a larger version of this figure.
9:00 a.m. | Start preparations |
10:00 a.m. | Incise skin |
Exposure of skull (10 min) | |
Craniotomy (30 min) | |
11:00 a.m. | Start to insert the array |
Insert the array (60 min) | |
12:30 p.m. | Close skin |
Table 1: Recommended time course of the surgery.
For successful implantation, animals should be provided with adequate nutrition before and after surgery. Short operating time is also important to optimize the animal's recovery. Preparations should be finished at least one day before surgery. To reduce operating time, previous craniotomy training with electrode array insertion in terminated animals for other experimental purposes is recommended. Table 1 shows an example of the time course for this protocol.
We modified the anesthesia procedure and post-operative treatment on a case-by-case basis. In this video protocol, the animals were anesthetized and maintained using a mixture of isoflurane and oxygen delivered through tracheal intubation. Isoflurane can be replaced with sevoflurane, and tracheal intubation can be replaced with a mask. In other cases, we anesthetized animals with intramuscular injection of a mixture of ketamine and medetomidine. In this case, animals were initially sedated with butorphanol (0.2 mg/kg i.m.), and surgical anesthesia was achieved with a mixture of ketamine (30 mg/kg i.m.) and medetomidine (0.35 mg/kg i.m.).
Because ECoG directly records changes in electrical fields, its temporal resolution is limited by the recording system. The maximum time resolution of our recording system is 30 kHz. We usually sampled signals at a 1 kHz sampling rate and have found this to be sufficient for extraction of sensory/motor information.
Spatial resolution is dependent on electrode design. In this protocol, each electrode contact was 0.8 mm in diameter and had an inter-electrode distance of 2.5 mm. We observed different waveforms from three electrodes located in different auditory areas and separated by 2.5 mm (ch18, ch19, ch20 in Figure 4). Thus, the spatial resolution of our electrodes is estimated to be less than 2.5 mm. In some cases, electrode contacts were located more closely to each other. In these cases, the spatial resolution was finer.
We successfully recorded long-term, neuronal signals with good quality. In one case, the connector and dental acrylic were detached from the skull, and the electrode was broken 4 months after the surgery. This was caused by tissue growth due to blood being contained between the dental acrylic and skull during surgery. Another marmoset was terminated due to an experimental requirement 5 months after the surgery. Four animals are still participating in experiments (1 year, 7 months, 4 months, and 4 months after the surgery, respectively).
ECoG arrays are typically implanted in the subdural space in humans and macaques. However, less invasive epidural implantations are more suited to marmosets, because they are delicate animals. The thin dura matter of marmosets allowed us to monitor high-frequency brain signals, even if the ECoG array was implanted on the dura. One of the disadvantages of epidural implantation is difficulty accessing the midline cortex and any cortex within a sulcus. Approaching these cortices requires incision of the dura matter. Furthermore, because ECoG arrays are surface electrodes, it is difficult to specify the signal source in terms of cortical depth. In order to understand precise information processing in the cortex, it is necessary to include other methods, such as depth electrodes or optical imaging. Despite these limitations, our method can provide new insight into cortical information processing. For example, sensory agency has been believed to emerge through rapid interactions between frontal and sensory areas; however, their mechanisms remain unclear since this rapid, large-scale, cortical information flow is difficult to monitor without the method presented here.
The authors have nothing to disclose.
We thank Yuri Shinomoto for providing animal care, training, and awake recordings. The ECoG arrays were manufactured by Cir-Tech (www.cir-tech.co.jp). Furthermore, we would like to thank Editage (www.editage.jp) for English language editing. This work was supported by the Brain Mapping by Integrated Neurotechnologies for Disease Studies (Brain/MINDS), the Japan Agency for Medical Research and development (AMED) (JP18dm0207001), the Brain Science Project of the Center for Novel Science Initiatives (CNSI), the National Institutes of Natural Sciences (NINS) (BS291004, M.K.), and by the Japan Society for the Promotion of Science (JSPS) KAKENHI (JP17H06034, M.K.).
Beaker (100 cc) | Outocrave | ||
Cotton ball | Outocrave | ||
Absorption triangles | Fine Science Tools Inc. | 18105-03 | Outocrave |
Cotton swab with fine tip | Clean Cross Co., Ltd. | HUBY340 BB-013 | Outocrave |
Gauze | Outocrave | ||
Towel forceps | Outocrave | ||
Scalpel handle | Outocrave | ||
Needle Holder | Outocrave | ||
Iris Scissor | Outocrave | ||
Micro-Mosquito Forceps | Outocrave | ||
Adson, 1×2 teeth | Outocrave | ||
Bone Curette | Outocrave | ||
Micro spatura | Fine Science Tools Inc. | 10091-12 | Outocrave |
Needle Holders, 12.5cm, Curved, Smooth Jaws | World Precision Instruments | 14132 | Outocrave |
Vessel Dilator, 12cm, 0.1mm tip | Fine Science Tools Inc. | 18131-12 | Outocrave |
Vessel Dilator, 12cm, 0.2 mm tip | Fine Science Tools Inc. | 18132-12 | Outocrave |
Fine-tipped rongeur | Fine Science Tools Inc. | 16221-14 | Outocrave |
Manipurator of a stereotaxic frame | Gas sterilization | ||
Wrench for the manipurator | Gas sterilization | ||
Hand-made fixture for the connector | Gas sterilization | ||
Silicon cup for dental acril | Gas sterilization | ||
Silicon cup hlder | Gas sterilization | ||
Paintbrush | Gas sterilization | ||
Pencil | Gas sterilization | ||
Micro screw, 1.4 mm x 2.0 mm | Nippon Chemical Screw Co., Ltd. | PEEK/MPH-M1.4-L2 | Gas sterilization |
Screw driver for the micro screw | Gas sterilization | ||
Micromotor handpiece of a drill | Gas sterilization | ||
Stainless steel burr, 1.4 mm | Gas sterilization | ||
Stainless steel burr, 1.0 mm | Gas sterilization | ||
Drill bit, 1.2 mm | Gas sterilization | ||
Rubber air blower | Gas sterilization |