This manuscript describes the processing of single multifunctional ceramic components (e.g., combinations of dense-porous structures) additively manufactured by stereolithography.
An additive manufacturing technology is applied to obtain functionally graded ceramic parts. This technology, based on digital light processing/stereolithography, is developed within the scope of the CerAMfacturing European research project. A three-dimensional (3-D) hemi-maxillary bone-like structure is 3-D printed using custom aluminum oxide polymeric mixtures. The powders and mixtures are fully analyzed in terms of rheological behavior in order to ensure proper material handling during the printing process. The possibility to print functionally graded materials using the Admaflex technology is explained in this document. Field-emission scanning electron microscopy (FESEM) show that the sintered aluminum oxide ceramic part has a porosity lower than 1% and no remainder of the original layered structure is found after analysis.
High-complex technical ceramics are increasingly in demand in almost every field of application, including many industrial areas. The field of human healthcare finds more and more applications as a result of the ease of individualization of the products for each patient. In the last decade, additive manufacturing has enhanced the options of individual medical treatments.
Additive manufacturing (AM) is a processing technology that allows the translation of a computer-generated 3-D model into a physical product by sequenced addition of material. In general, a series of 2-D layers form a stack that results in a 3-D shape, allowing the production of components with a, so far, unprecedented freedom of design. This is considered to be state-of-the-art shaping technology for polymers and metals. The first industrial technologies for ceramic processing are available1,2, and nearly all known AM technologies are used for AM of single-material ceramics in laboratories all over the world3,4,5. AM, especially stereolithography, began in the 1980s and was developed by Hull6. Different manufacturing approaches and materials lead to a variety of product properties, such as size, roughness, or mechanical properties. All additive manufacturing techniques can be classified into two groups: direct additive manufacturing technologies5, which are based on the selective deposition of the material (e.g., material jetting processes like Direct Inkjet Printing or Thermoplastic 3-D Printing [T3DP])7,8,9,10, and indirect additive manufacturing technologies, which are based on the selective consolidation of the material which is deposited on the whole layer (e.g., ceramic stereolithography [SLA]).
The complexity and readiness of the new applications demand an improvement of the AM ceramic processing technologies. For example, special innovative industrial or medical applications have to include different properties within the very same component, which leads to Functionally Graded Materials (FGMs). These materials include a variety of properties concerning transitions in the microstructure or in the material11. These transitions can be discrete or continuous. Different kinds of FGMs are known, such as components with material gradients or graded porosity, as well as multi-colored components. FGM components can be manufactured by single conventional shaping technologies12,13,14,15,16,17 or by a combination of these technologies, for example, by in-mold labeling as a combination of tape casting and injection molding18,19.
To combine the benefits of AM with the advantages of FGMs to ceramic-based 4-D components20 (three dimensions for the geometry and one degree of freedom concerning the material properties at each position), Admatec Europe has developed a stereolithography-based 3-D printing device within the "CerAMfacturing" European research project for the AM of multi-functional or multi-material components.
The technology adapted for FGM components is a stereolithography-based approach that employs a digital light processor (DLP) as light source containing a digital micromirror device chip (DMD), used to polymerize a resin which can be mixed with different powders. The DMD chip has an array of several hundred thousand microscopic mirrors, which correspond to the pixels in the image to be displayed. The mirrors can be individually rotated to set an on-off position of the pixel. The most commonly employed resins are based on mixtures of acrylate and/or urethane monomers. In these mixtures, we also found other additives, such as light-absorbing photoinitiator molecules and dyes. The resin mixture is typically poured into a container or bath, also called vat. The polymerization is induced by the reaction of a photoinitiator molecule (PI), with the light photons generated by the DMD chip. Different resin monomer structures may result in different polymerization rates, shrinkage, and final structure. For example, the use of monofunctional monomers vs. polyfunctional monomers has an effect in the cross-linking of the polymeric network.
One of the most important parameters to take into account with ceramic SLA is the light-scattering effect produced when light (photons) traverses through different materials. This is highly impacting; in this case, the resins are combined with an amount of powder to generate a suspension or slurry. The slurry is, then, composed of materials that present a different refractive index to the light. A large difference between the refractive index values of the resin and the powder affects the dimensional accuracy of the layers, the polymerization rates, and the total light dose to trigger the polymerization reaction. When light enters the suspension, the powder particles (i.e., ceramic, metal, or other polymers) diffract the light path. This effect induces a change in the original path of the (irradiated) photons. If the photons have a trajectory oblique to the exposure direction, they may generate a polymerization reaction in a location that can be transversal to the original direction. This phenomenon results in overexposure when the area of the cured slurry is larger than the exposed area. Likewise, it will under-expose, when the cured slurry layer is smaller than the originally exposed area.
Within the manuscript, the research for the AM of alumina components combining a dense and macroporous structure, realized by using the Admaflex technology, is described. As explained in the "CerAMfacturing" European research project, the production of FGM ceramic parts requires a high resolution and good surface properties to meet the demanding applications. DLP stereolithographic technologies, such as the one described here, allows researchers to obtain such ceramic-based, fully functional components.
1. Development of Photocurable Ceramic Suspensions
2. Manufacturing of Single-graded and FGM Components by Ceramic SLA
3. Co-debinding and Co-sintering of Single-graded and FGM Components
4. Characterization of Single-graded and Functionally Graded Components
For the production of single-material components and, eventually, functionally graded structures by means of a combination of dense and porous sections in a macroscopic range, only suspensions based on the alumina have been used.
The measurement result of the average particle diameter (D50) of the used alumina powder after dispersion was 0.47 µm. This result correlates with the given information of an actual particle size of 0.45 to 0.5 µm from the supplier. Figure 1A shows the FESEM analysis of the alumina powder before preparation and Figure 1B a FESEM image of a granulate surface in detail. Figure 1C and Figure 1D show the same for the deagglomerated alumina in a dried state. The untreated powders are not present as single primary particles, but as big spherical granules (with a diameter up to 100 µm), which is a typical condition for dry pressing raw materials. The FESEM images of the granulate surfaces show the primary particles of the alumina untreated (Figure 1B) and deagglomerated (Figure 1D) with an actual particle size of approximately 0.45 µm.
Figure 2 shows the dynamic viscosity of the developed suspensions based on the alumina powder as a function of the shear rate—logarithmic presentation—and depending on different compositions concerning varied powder content, binder-crosslinker ratio, and content of the dispersing agent. All suspension compositions show a shear thinning behavior, but different levels of dynamic viscosities.
The suspension homogeneity is shown in Figure 3 with a FESEM image of a thin slice of ceramic-polymeric resin. The ceramic primary particles appear clearly while the polymeric resin is to some extent not detected by the electron detector.
The measurement of the storage modulus G´ as a function of time to characterize the curing behavior as depending on time is shown in Figure 4. The adjustable parameter of the printing device helps to evaluate the curing time during printing. Generally, the suspension shows a constant level of G´ below 1,000 Pa for a steady deformation. During the exposure of the suspensions, which starts after 60 s, G´ increases depending on the exposure time—varied in a range of 1 to 20 s—to a higher level of G´, above 105 Pa. Within the diagram, the curves represent different exposure times of a suspension to show the influence on the strength of the cured polymer-ceramic-composite.
The ceramic SLA printing equipment, using the Admaflex technology, can handle high viscosity ceramic slurries thanks to the transport system. The FGM parts can be conceived by a pixel-by-pixel control that directs the irradiated light for each section of the network. The under- and overexposure effects can be compensated for by the same pixel-by-pixel control feature. In addition, this is complemented by a developed software suite identifying the different sections—porous and dense—in order to compensate the light behavior differences per exposed area. This proprietary technology provides adapted light-curing strategies to such sections.
By using a suspension with the dynamic viscosity behavior as presented in composition 1 (Figure 2), single-component FGMs with 3-D structures were manufactured after the empirical determination of the device parameters. Figure 5A shows a complex 3-D model and Figure 5B shows the sintered test structure based on the alumina suspensions additively manufactured within the research program.
Figure 6 shows FESEM images of the microstructure of a single-material FGM component within the dense part; the porosity is in a macroscopic range.
Figure 1: FESEM Images. The first two panels show field-emission scanning electron microscope images of (A) the original alumina powder and (B) surface detail. The next two panels show field-emission scanning microscope images of (C) the powder particles after deagglomeration and (D) surface detail. Please click here to view a larger version of this figure.
Figure 2: Dynamic viscosity as a function of the shear rate for different developed suspensions as depending on composition. Please click here to view a larger version of this figure.
Figure 3: Field-emission scanning electron microscope image of a ceramic-resin suspension. The figure shows the powder suspension homogeneity on the polymeric resin.
Figure 4: Storage modulus G´ as a function of time for several suspensions with different compositions.
Figure 5: 3-D Modeling and Printing. (A) This panel shows a 3-D model of a single-material functionally graded ceramic material component. (B) This panel shows the sintered result of the printing process.
Figure 6: Field-emission scanning electron microscope images of a sintered alumina structure. (A) This panel shows an overview. (B) This panel shows a detailed image. Please click here to view a larger version of this figure.
For medical implants, the raw material has to be of high purity, ideally of 99.9% and higher. In this project, a non-commercial alumina powder with a narrow particle size distribution, an average particle size < 0.5 µm, and a specific surface of approximately 7 m2/g is used. Alternatively, it is also possible to use commercial material compositions.
In order to achieve the most appropriate handling conditions for these particular ceramic-polymer slurries, use the aforementioned printing technology. This technology is equipped with a transport foil system that carries the slurry from a reservoir to the printing area. The printing area is composed of a transparent glass surface at the bottom, under which there is a light source that projects the sliced layers. At the top of the printing area, there is a building platform that can move vertically up and down thanks to a z-axis slide. The product, then, hangs on the surface of the metal printing plate that can be attached by vacuum suction, above the printing area. The unused slurry is then collected by a wiper, reconditioned, and pumped back to the original reservoir, thus creating a closed circuit which allows researchers to reuse the slurry that was not consumed for the construction of the 3-D model. Different software parameters can be changed in order to adapt the process to different slurry compositions and ceramic fillers. The printer must be placed in a room with controlled light, temperature, and humidity settings. The room must be equipped with a UV-filter for the outside light; in addition, it is recommended to have a temperature of around 20 – 24 °C and a relative humidity below 40%. The FESEM imaging shows an apparent larger average particle size of alumina powder after deagglomeration, compared to the theoretical 0.45-µm alumina material analyses by the supplier. This can be explained in terms of agglomeration. During drying, after the deagglomeration step, the particles re-agglomerate, as seen in Figure 1D. During the suspension preparation, the re-agglomerated particles can be dispersed thanks to the surface functionalization step. A smaller apparent particle size can be seen in the FESEM imaging of the slurry in Figure 3.
Concerning the rheological behavior, an ideal slurry for ceramic SLA technology (e.g., Admaflex technology) should have a shear thinning behavior (i.e., decreasing dynamic viscosity at higher shear rates). For an optimal cast on supporting foil or use within a dispensing unit, the dynamic viscosity should be kept at an ideal range at low shear rates. In case of too high dynamic viscosity at low shear rates, the casting of a slurry layer of 200 µm might be hampered by the lack of flow to fill the gap under the doctor blade. If the dynamic viscosity it is too low, the suspension may flow by itself from the reservoir below the blade or away from the support foil due to natural flow (gravity). For all investigated suspensions, the dynamic viscosity decreases with an increasing shear rate. The optimal suspension flow behavior is given by composition 1 (Figure 2). Different changes in the slurry composition affect the rheological behavior of the suspension. The optimal flow behavior with a low dynamic viscosity in the required range was achieved by suspension compound 1. An increase of the powder content or a non-optimal content of the dispersing agent (compound 2) and a change of the binder-crosslinker ratio using a higher amount of multifunctional crosslinker (composition 3) led to an increase of the dynamic viscosity, disadvantageously for the process. If the powder content is lower, together with a lower content of multifunctional crosslinker and in combination with a non-optimal content of the dispersing agent (composition 4), the dynamic viscosity is strongly reduced, possibly leading to an unstable suspension.
The change in storage modulus G´ of the slurries upon light irradiation can help to learn more about the curing behavior of the suspensions. This is complemented by experimental tests on the depth of curing at the printing device itself. The curing behavior at different curing times was characterized for an alumina suspension with an optimal rheological behavior. Before curing starts, the suspension shows a low level of G´ and presents values below 100 Pa. When curing starts, a polymerization of the photoreactive organics can be inferred by an increase of G´ to a higher level. With an increasing curing time, the slope of G´ increases to a maximum in a range of 105 to 107 Pa which depends on the composition. A curing time of 1 s led to a final G´ below 106 Pa, which is not enough for a minimum necessary strength. With an increasing curing time, more energy (photons) is supplied to the suspension, which leads to a higher G´ as a result of a faster and higher degree of conversion (higher slope). The optimal curing time for the developed alumina suspension should be in a range of 2 to 3 s. With a curing time of 4 s, the final level of G´ and the curing slope have large values, above 2 x 106 Pa. The conversion is almost complete and nearly no uncured polymers exist. Further energy supply may result in overcuring the slurry and an excessive hardening of the polymer, resulting in a brittle structure which has an adverse effect on the attachment of the product with the building platform.
The single-FGM test component chosen for this manuscript is a hemi-maxillary implant structure that contains a dense outer shell and a porous bone-like central core, as can be seen in Figure 5. This model could be additively manufactured and sintered defect-free, as seen by the FESEM imaging. Fine structures and wall thicknesses (less than 0.1 mm) can be realized and no apparent deformation during sintering occurred. It was found that the microstructure of the single alumina components is typical for the ceramic processing of alumina at the given sintering temperatures, with a homogeneous grain size. The porosity in the bulk areas is very low (< 1%), and a density > 99%, compared to the theoretical density, was achieved.
The authors have nothing to disclose.
This project has received funding from the European Union's Horizon 2020 Research and Innovation Program under Grant Agreement No 678503.
Taimicron (TM-100D) | Taimei Chemicals Co Ltd., Japan | … | alumina (commercial) |
BYK LP C22124 | BYK-Chemie GmbH, Germany | … | dispersant |
Mastersizer 2000 | Malvern Instruments Ltd., United Kingdom | … | laser diffractometer |
TriStar 3000 | Micromeritics Instrument Corp., USA | … | adsorption/desorption |
Pulverisette 5/4 classic line | Fritsch GmbH, Germany | … | planetary ball mill |
Thinky ARV-310 | C3-Prozesstechnik, Germany | … | high-speed planetary ball mill |
Modular Compact Rheometer MCR 302 | Anton Paar, Graz, Austria | … | rheometer |
UV-LED Smart | Opsytec Dr. Gröbel GmbH, Germany | blue LED | |
prototype | Admatec, Netherland | … | Admaflex |
NA120/45 | Nabertherm, Germany | … | debinding furnace |
LH 15/12 | Nabertherm, Germany | … | sintering furnace |
Gemini 982 | Zeiss, Germany | … | FESEM |