A procedure is presented for the refolding of the dCACHE periplasmic ligand binding domain of Campylobacter jejuni chemoreceptor Tlp3 from inclusion bodies and the purification to yield milligram quantities of protein.
Identification of natural ligands of chemoreceptors and structural studies aimed at elucidation of the molecular basis of the ligand specificity can be greatly facilitated by the production of milligram amounts of pure, folded ligand binding domains. Attempts to heterologously express periplasmic ligand binding domains of bacterial chemoreceptors in Escherichia coli (E. coli) often result in their targeting into inclusion bodies. Here, a method is presented for protein recovery from inclusion bodies, its refolding and purification, using the periplasmic dCACHE ligand binding domain of Campylobacter jejuni (C. jejuni) chemoreceptor Tlp3 as an example. The approach involves expression of the protein of interest with a cleavable His6-tag, isolation and urea-mediated solubilisation of inclusion bodies, protein refolding by urea depletion, and purification by means of affinity chromatography, followed by tag removal and size-exclusion chromatography. The circular dichroism spectroscopy is used to confirm the folded state of the pure protein. It has been demonstrated that this protocol is generally useful for production of milligram amounts of dCACHE periplasmic ligand binding domains of other bacterial chemoreceptors in a soluble and crystallisable form.
Chemotaxis and motility have been shown to play important roles in Campylobacter jejuni pathogenesis by promoting bacterial colonisation and invasion of the host1,2,3. Chemotaxis allows bacteria to move towards an optimal environment for growth, as guided by chemical signals. This process involves recognition of intracellular and environmental chemical cues by a set of proteins termed chemoreceptors, or transducer-like proteins (Tlps). Most chemoreceptors are membrane-embedded proteins with an extracytoplasmic ligand binding domain (LBD), a transmembrane domain and a cytoplasmic signalling domain, the latter of which interacts with the cytosolic signalling proteins that transmit the signal to the flagellar motors4,5,6,7.
Eleven different chemoreceptors have been identified in the C. jejuni genome4,8. To date, only some of these chemoreceptors have been characterised and the ligand specificity of Tlp19, Tlp310,11, Tlp411, Tlp712, and Tlp1113 is known. Identification of natural ligands of the remaining chemoreceptors in this species, and numerous chemoreceptors in other bacteria, can be greatly facilitated by the production of folded and highly pure recombinant chemoreceptor LBDs14,15,16. However, attempts to heterologously express periplasmic LBDs of bacterial chemoreceptors in Escherichia coli often result in their targeting into inclusion bodies17,18,19. Nevertheless, this phenomenon can facilitate easy isolation and recovery of the protein in hand. Here, a method is presented for protein recovery from inclusion bodies, its refolding and purification, using the periplasmic LBD of the C. jejuni chemoreceptor Tlp3 as an example. This example was chosen because Tlp3-LBD belongs to the dCACHE family20 of sensing domains which are abundantly found in two-component histidine kinases and chemoreceptors in prokaryotes20,21,22,23.
In this approach, the expression construct, based on a pET151/D-TOPO vector, has been designed to incorporate an N-terminal His6-tag followed by a tobacco etch virus (TEV) protease cleavage site, for subsequent tag removal19. The protocol describes protein overexpression in E. coli, isolation and urea-mediated solubilisation of inclusion bodies, and protein refolding by urea depletion. Following refolding, the sample is purified by affinity chromatography, with optional tag removal and size-exclusion chromatography. The folded state of the purified protein is confirmed using circular dichroism spectroscopy. This is a modified version of the method that has been previously developed to recover and purify the LBD of a different chemoreceptor, Helicobacter pylori TlpC19. This procedure, summarised in Figure 1, yields 10 – 20 mg of pure, untagged Tlp3-LBD per 1 L of bacterial culture, with a protein purity of >90% as estimated by SDS-PAGE.
1. Expression of His6-Tlp3-LBD in E. coli
2. Isolation and Denaturation of Inclusion Bodies
3. Protein Refolding
4. Purification of His6-tagged Protein Using Immobilised Metal Ion Affinity Chromatography
5. His6-tag Removal Using TEV Protease (Optional)
6. Size-exclusion Chromatography (Gel Filtration) of Tlp3-LBD
7. SDS-PAGE Analysis of Samples Collected at Various Stages of Protein Purification
8. Circular Dichroism (CD) Spectroscopy Analysis of Secondary Structure of refolded Pure Protein
Recombinant expression of His6-Tlp3-LBD in E. coli resulted in protein deposition in inclusion bodies. The expression yield from 1 L of bacterial culture calculated in step 2.13 was approximately 100 mg of His6-Tlp3-LBD deposited in inclusion bodies. The protein isolation procedure, described here and illustrated in Figure 1, consists of the solubilisation of inclusion bodies, protein refolding and purification, by means of affinity chromatography, tag removal and size-exclusion chromatography, and yields 10 – 20 mg of pure, untagged Tlp3-LBD per 1 L of bacterial culture.
The protein eluted from the gel-filtration column as a single, symmetrical peak corresponding to a retention volume of 220 mL (Figure 2A). Calculation of the molecular weight (MW) using a calibration plot of log (MW) versus retention volume (Vretention (mL) = 549.3-73.9 x log(MW)) available at the EMBL Protein Expression and Purification Core Facility website (http://www.embl.de/pepcore/pepcore_services/protein_purification/chromatography/hiload26-0_superdex200/index.html), yielded the value of 29 kDa. This value was very close to that calculated from the amino acid sequence (28.7 kDa), which suggested that Tlp3-LBD is a monomer in solution.
To evaluate the purification process, samples collected at different steps were evaluated using SDS-PAGE analysis. As shown in Figure 2B, inclusion bodies contained predominantly His6-Tlp3-LBD. Small amounts of this protein were also present in the soluble fraction of the induced culture (IPTG(+)), and in the uninduced culture (IPTG(-)) – apparently as a result of the leaky expression of the T7 polymerase. His6-Tlp3-LBD migrated on the polyacrylamide gel with an apparent molecular weight of 28 kDa, which is close to the value calculated from the amino acid sequence (31.8 kDa). The His6-tag removal, affinity chromatography and gel filtration steps yielded highly pure protein (>90% electrophoretic homogeneity).
To confirm that the protein obtained by this procedure was folded, the secondary structure of His6-Tlp3-LBD was evaluated by CD spectroscopy. Estimation of the α-helix and β-sheet content from the CD spectrum (Figure 3) using CDSSTR gave values of 31% α and 23% β. These values were close to those predicted from the sequence analysis using the Jpred3 server (http://www.compbio.dundee.ac.uk/www-jpred/) (37% α and 26% β), indicating that the protein recovered from the urea-denatured inclusion bodies was folded.
Figure 1: Schematic of presented method. Recombinant His6-Tlp3-LBD is expressd in E. coli upon induction with IPTG (see section 1). After 4 h expression, bacterial cells are harvested and lysed (see section 2). The insoluble fraction containing the inclusion bodies (IB) is washed for removal of membrane and membrane proteins impurities, after which the IB are dissolved in a buffer containing urea at high concentration (see section 2). His6-Tlp3-LBD is refolded by dilution into buffer E followed by exhaustive dialysis for gradual urea removal (section 3). Refolded His6-Tlp3-LBD is then purified by immobilized metal ion affinity chromatography as described in section 4. The His6-tag is removed using TEV protease (section 5). Untagged Tlp3-LBD is concentrated and further purified by gel filtration chromatography (section 6). Points for collection of samples for SDS-PAGE analysis are indicated with *. Please click here to view a larger version of this figure.
Figure 2: Purification of recombinant Tlp3-LBD. (A) Size-exclusion chromatography trace of untagged Tlp3-LBD on a Superdex 200 HiLoad 26/60 gel filtration column. The protein eluted with a retention volume of 220 mL. (B) Reduced 15% SDS-PAGE Coomassie Blue-stained gel. M: protein molecular weight marker; IPTG (-): uninduced control sample collected in step 1.3; IPTG (+): soluble fraction after IPTG induction (collected in step 2.3); IB: isolated inclusion bodies (step 2.13); Refolded His6-Tlp3-LBD: refolded protein sample from step 4.6; Untagged Tlp3-LBD: protein sample obtained in step 5.13; Gel filtration 1 and 2: two fractions from the protein peak eluted from the gel-filtration column (step 6.6). Please click here to view a larger version of this figure.
Figure 3: Circular dichroism spectrum of purified recombinant Tlp3-LBD. The spectrum was recorded at 25 °C in 50 mM sodium phosphate pH 7.4. Please click here to view a larger version of this figure.
A simple procedure for expression and refolding from inclusion bodies of the periplasmic LBD of the bacterial chemoreceptor Tlp3 is presented. Preparation of the pure protein involves over-expression of the pET-plasmid-encoded gene in E. coli, purification and solubilisation of inclusion bodies, refolding of the denatured protein and its purification by the consecutive affinity and size-exclusion chromatography steps. The urea-facilitated denaturation and dilution/dialysis-mediated refolding are the critical steps in the protocol, optimisation of which is often required to ensure the proper renaturation of the protein deposited in inclusion bodies26.
Refolding of Tlp3-LBD was achieved in a two-step manner, first by diluting the denatured sample into a buffer containing urea, and then by dialysing the sample against a buffer devoid of it. The refolded protein obtained using this protocol was functional and crystallisable18,23. However, the presented method has some limitations. It is well known that carbamylation of amino groups often occurs when protein is denatured and refolded in the presence of urea27,28,29. This is due to the fact that the dissolved urea decomposes with time and produces cyanate30 that reacts with the protein amino groups to form a stable carbamylated product and, to a minor extent, with other functional groups31,32. The decomposition of urea is accelerated under conditions of alkaline pH and elevated temperature. So, it is recommended to make fresh urea solutions from ultrapure (>99%) solid reagent, and perform the refolding/dialysis steps at low temperature (4 °C)30,33, to diminish cyanate formation. Moreover, choosing the buffer containing primary amines, such as Tris, glycine or ammonium bicarbonate, for the refolding mix is important to allow scavenging of the produced cyanate29,33. Other option is to use guanidine hydrochloride instead of urea, as guanidine hydrochloride has not been reported to chemically modify proteins.
In addition to urea, a reducing agent (DTT or β-mercaptoethanol) is often required to solubilize inclusion bodies and to prevent non-native intra- and intermolecular disulfide bonds formation by maintaining the cysteine residues in their reduced state26,34. Tlp3-LBD has one intramolecular disulfide bond, and in this protocol, 10 mM DTT was incorporated into the inclusion bodies denaturation buffer (step 2.10) to aid the resuspension of the insoluble protein. DTT concentration was then reduced by ~100 fold by diluting the sample into the protein refolding buffer, followed by the dialysis step to gradually remove all DTT. It is important to note that the application of this procedure to the refolding of proteins with multiple disulfide bonds may need optimization of the concentration of both oxidizing and reducing agents (e.g. oxidized and reduced glutathione (GSSH/GSH), GSSH/DTT, cystamine/cysteamineor cystine/cysteine) to promote proper formation of disulfide bridges34,35. Furthermore, if the protein of interest has unpaired cysteines that are not involved in disulfide bond formation, a reducing agent should be added to all purification buffers. Prediction of the potential disulfide bridges from the amino acid sequence of a protein can be performed using several in silico tools (e.g. cys_rec: http://linux1.softberry.com/berry.phtml?topic=cys_rec&group=programs&subgroup=propt).
The use of the presented protocol for purification of different proteins is also likely to require optimization of the concentration of imidazole during the washing step 4.4. As shown in Figure 2B (lane labelled IB), the isolated inclusion bodies contained, in this instance, predominantly the protein of interest. If additional significant bands are visible on SDS PAGE gel of the IB sample, increasing the imidazole concentration in step 4.4 will be required to remove the contaminants, but might reduce protein yield36,37. Other option is to apply a linear gradient of imidazole concentration and pool the eluted fractions that contain the protein of interest.
The final step in the purification, size-exclusion chromatography, provides the means to simultaneously estimate the molecular mass of the eluted particles and derive the oligomeric state of the protein. However, estimation of the molecular mass by size-exclusion chromatography is only accurate for spherical molecules, which is not the case for many proteins38,39. One can determine the protein molecular mass and oligomeric state with higher accuracy by using size-exclusion chromatography coupled to multi-angle light scattering (SEC-MALS)40 or analytical ultracentrifugation41. We have previously confirmed that Tlp3-LBD is monomeric in solution by using SEC-MALS analysis23, and this result is consistent with the reports on other dCACHE LBDs42,43.
The presented protocol, in its original or slightly modified form, has been used to refold and purify several chemoreceptor LBDs from the dCACHE family for X-ray crystallographic studies17,18,19,23,42,44. This procedure may be generally useful for production of milligram amounts of periplasmic LBDs of other bacterial chemoreceptors in a soluble and crystallisable form. In each separate case, protocol optimization is likely needed. In addition to the points discussed above, optimal solubilisation of inclusion bodies and protein refolding may require the use of detergents (e.g. SDS or N-acetyl trimethyl ammonium chloride), additives (e.g. L-arginine) and adjustment of their concentration and incubation time in individual refolding steps26,34,45,46. Furthermore, the protein concentration in the refolding step significantly affects the refolding yield. The range of concentrations from 1 ng mL-1 to 10 mg mL-1 should generally be tested. For Tlp3-LBD, the optimal concentration of protein in the refolding mix was 0.2 mg mL-1.
Extremely low refolding yield is usually a sign that the trial refolding conditions are far from optimal. One can expect that high yield is consistent with a folded protein, which can be validated by using CD spectroscopy (as outlined in this procedure). Furthermore, crystallisability of the resultant protein can sugguest the protein's folded state. Alternatively, a functional assay (if available) can be used to confirm that the protein is folded. In the case of Tlp3-LBD, for example, the refolded protein was shown to retain its ligand-binding ability, as shown by isothermal calorimetry.23
The authors have nothing to disclose.
We thank Yu C. Liu for his early work on the Tlp3-LBD production. Mayra A. Machuca is indebted to Departamento Admistrativo de Ciencia, Tecnología e Innovación COLCIENCIAS for a doctoral scholarship.
Tris base | AMRESCO | 497 | |
Sodium chloride (NaCl) | MERK MILLIPORE | 1064041000 | |
Ampicillin | G-BIOSCIENCES | A051-B | |
Phenylmethanesulfonyl fluoride (PMSF) | MERCK | 52332 | |
Triton x-100 | AMRESCO | 694 | |
Isopropyl β-D-thiogalactoside (IPTG) | ASTRAL SCIENTIFIC PTY LTD | AST0487 | |
Urea | AMRESCO | VWRC0568 | |
Dithiothreitol | ASTRAL SCIENTIFIC PTY LTD | C-1029 | |
L-arginine monohydrochloride | SIGMA-ALDRICH | A5131 | |
Reduced L-glutathione | SIGMA-ALDRICH | G4251 | |
Oxidized L-glutathione | SIGMA-ALDRICH | G4376 | |
Sodium phosphate dibasic (Na2HPO4) | SIGMA-ALDRICH | 7558-79-4 | |
Sodium phosphate monobasic (NaH2PO4) | SIGMA-ALDRICH | 10049-21-5 | |
Ethylenediaminetetraacetic acid disodium salt dehydrate (EDTA) | AMRESCO | VWRC20302.260 | |
Imidazole | SIGMA-ALDRICH | I2399 | |
Glycerol | ASTRAL SCIENTIFIC PTY LTD | BIOGB0232 | |
Nickel chloride (NiCl2) | SIGMA-ALDRICH | 339350 | |
Glycine | AMRESCO | VWRC0167 | |
Sodium dodecyl sulfate (SDS) | SIGMA-ALDRICH | L4509 | |
Unstained Protein Ladder, Broad Range (10-250 kDa) | NEW ENGLAND BIOLABS | P7703 | |
Amicon Ultracel centrifugal concentrator (Millipore) | MERCK | UFC901096 | |
50 mL Falcon tube | FALCON | BDAA352070 | |
Dialysis tubing | LIVINGSTONE INTERNATIONAL PTY | Dialysis | |
Snakeskin dialysis tubing | THERMO SCIENTIFIC™ | 68100 | |
Prepacked HiTrap Chelating HP column | GE HEALTHCARE LIFE SCIENCES | 17-0408-01 | |
EmulsiFlex-C5 high-pressure homogeniser | AVESTIN | EmulsiFlex™ – C5 | |
Peristaltic Pump P-1 | GE HEALTHCARE LIFE SCIENCES | 18-1110-91 | |
Superdex 200 HiLoad 26/60 size-exclusion column | GE HEALTHCARE LIFE SCIENCES | 28989336 | |
JASCO J-815 spectropolarimeter | JASCO | J-815 |