Summary

En Protein Forberedelse Metode til High-throughput Identifikation af proteiner Samspil med en Nuclear Cofactor Brug LC-MS / MS-analyse

Published: January 24, 2017
doi:

Summary

Vi har etableret en fremgangsmåde til oprensning af coregulatoriske interaktion proteiner ved anvendelse af LC-MS / MS-system.

Abstract

Transcriptional coregulators are vital to the efficient transcriptional regulation of nuclear chromatin structure. Coregulators play a variety of roles in regulating transcription. These include the direct interaction with transcription factors, the covalent modification of histones and other proteins, and the occasional chromatin conformation alteration. Accordingly, establishing relatively quick methods for identifying proteins that interact within this network is crucial to enhancing our understanding of the underlying regulatory mechanisms. LC-MS/MS-mediated protein binding partner identification is a validated technique used to analyze protein-protein interactions. By immunoprecipitating a previously-identified member of a protein complex with an antibody (occasionally with an antibody for a tagged protein), it is possible to identify its unknown protein interactions via mass spectrometry analysis. Here, we present a method of protein preparation for the LC-MS/MS-mediated high-throughput identification of protein interactions involving nuclear cofactors and their binding partners. This method allows for a better understanding of the transcriptional regulatory mechanisms of the targeted nuclear factors.

Introduction

Protein-protein interaktioner spiller en vigtig rolle i mange biologiske funktioner. Som sådan er disse interaktioner blevet impliceret i signaltransduktion; protein transport over cellemembraner; cellemetabolisme; og adskillige nukleare processer, herunder DNA-replikation, DNA beskadigelse reparation, rekombination og transkription 1, 2, 3, 4. Identifikation af proteiner involveret i disse interaktioner er derfor afgørende for at fremme vores forståelse af disse cellulære processer.

Immunpræcipitering (IP) er en valideret teknik, der anvendes til at analysere protein-protein-interaktioner. For at lette identifikationen af co-immunpræcipiteret proteiner, er massespektrometri ofte brugt 5, 6, 7, 8,9. Ved at målrette en kendt medlem af et proteinkompleks med et antistof, er det muligt at isolere protein-kompleks og efterfølgende identificere sine ukendte komponenter via massespektrometrianalyse. ARIP4 (androgen receptor-interagerende protein 4), en transskriptionel coregulator, interagerer med nukleare receptorproteiner for at aktivere eller undertrykke sit mål initiativtagere i en kontekst-afhængig måde 9, 10. For bedre at forstå de transkriptionelle reguleringsmekanismer for disse nukleare faktorer, beskriver vi en omfattende metode til at rense og identificere ARIP4 interagerende proteiner ved hjælp af LC-MS / MS-system.

Protocol

1. Transfektion Seed HEK293-celler i 100 mm dyrkningsplader (2 x 10 6 celler / skål). Dyrke cellerne i Dulbeccos modificerede Eagles medium suppleret med 10% føtalt kalveserum, 100 ug / ml streptomycin, og 100 enheder / ml penicillin. Inkubér cellerne i en fugtig inkubator ved 5% CO2 og 37 ° C. Den næste dag, transfektion cellerne med 10 ug FLAG-mærket ARIP4 plasmid hjælp 40 pi transfektionsreagens i overensstemmelse med producentens anvisninger 11.</su…

Representative Results

Vi identificerede en stærk ARIP4 signal, omkring 160 KDa, såvel som dem af en mock prøve kontrol og flere andre ukendte proteiner (figur 1). LC-MS / MS-analyse identificeret både ARIP4 komplekse peptider og de potentielle peptid cofaktorer inden den del af FLAG perler (tabel 1). P62 (Sequestosome1) blev en kendt ARIP4 cofaktor 11 identificeret i analysen (tabel 1), hvilket bekræfter effekten af dette system <…

Discussion

Effektiv transfektion er afgørende for at opnå et vellykket resultat med denne protokol. Derfor anbefaler vi at bruge Western blot-analyse for at bestemme de immunopræcipiterede FLAG-mærkede protein niveauer. Dette trin giver brugerne mulighed for at kontrollere, at deres protein af interesse er korrekt overudtrykt og desuden, at IP blev udført med succes. FLAG-mærket protein niveauer bør også kontrolleres forud for massespektrometri analyse.

En mock prøve bør anvendes som en negat…

Divulgations

The authors have nothing to disclose.

Acknowledgements

This study was supported by the Astellas Foundation for Research on Metabolic Disorders (HT), the Takeda Science Foundation (HT), and by a Japan Society for the Promotion of Science Grants-in-Aid for Young Scientists (B) to HT.

Materials

Lipofectamine 2000 Transfection Reagent Thermo Fisher Scientific 11668019
Protease Inhibitor Cocktail (EDTA free) (100x) nacalai tesque 03969-21
ANTI-FLAG M2 Affinity Gel Sigma-Aldrich A2220
Micro Bio-Spin Columns BIO-RAD 732-6204

References

  1. De Las Rivas, J., Fontanillo, C. Protein-protein interactions essentials: key concepts to building and analyzing interactome networks. PLoS Comput.Biol. 6 (6), e1000807 (2010).
  2. Westermarck, J., Ivaska, J., Corthals, G. L. Identification of protein interactions involved in cellular signaling. Mol.Cell.Proteomics. 12 (7), 1752-1763 (2013).
  3. MacPherson, R. E., Ramos, S. V., Vandenboom, R., Roy, B. D., Peters, S. J. Skeletal muscle PLIN proteins, ATGL and CGI-58, interactions at rest and following stimulated contraction. Am.J.Physiol.Regul.Integr.Comp.Physiol. 304 (8), 644-650 (2013).
  4. Qin, K., Dong, C., Wu, G., Lambert, N. A. Inactive-state preassembly of G(q)-coupled receptors and G(q) heterotrimers. Nat.Chem.Biol. 7 (10), 740-747 (2011).
  5. Ogawa, H., Ishiguro, K., Gaubatz, S., Livingston, D. M., Nakatani, Y. A complex with chromatin modifiers that occupies E2F- and Myc-responsive genes in G0 cells. Science. 296 (5570), 1132-1136 (2002).
  6. Shi, Y., et al. Coordinated histone modifications mediated by a CtBP co-repressor complex. Nature. 422 (6933), 735-738 (2003).
  7. Huh, K. W., DeMasi, J., Ogawa, H., Nakatani, Y., Howley, P. M., Munger, K. Association of the human papillomavirus type 16 E7 oncoprotein with the 600-kDa retinoblastoma protein-associated factor, p600. Proc.Natl.Acad.Sci.U.S.A. 102 (32), 11492-11497 (2005).
  8. Huang, B. X., Kim, H. Y. Effective identification of Akt interacting proteins by two-step chemical crosslinking, co-immunoprecipitation and mass spectrometry. PLoS One. 8 (4), 61430 (2013).
  9. ten Have, S., Boulon, S., Ahmad, Y., Lamond, A. I. Mass spectrometry-based immuno-precipitation proteomics – the user’s guide. Proteomics. 11 (6), 1153-1159 (2011).
  10. Ogawa, H., Komatsu, T., Hiraoka, Y., Morohashi, K. Transcriptional Suppression by Transient Recruitment of ARIP4 to Sumoylated nuclear receptor Ad4BP/SF-1. Mol.Biol.Cell. 20 (19), 4235-4245 (2009).
  11. Tsuchiya, M., et al. Selective autophagic receptor p62 regulates the abundance of transcriptional coregulator ARIP4 during nutrient starvation. Sci.Rep. 5, 14498 (2015).
  12. Watanabe, T., Matsuo, I., Maruyama, J., Kitamoto, K., Ito, Y. Identification and characterization of an intracellular lectin, calnexin, from Aspergillus oryzae using N-glycan-conjugated beads. Biosci.Biotechnol.Biochem. 71 (11), 2688-2696 (2007).
  13. Sitz, J. H., Tigges, M., Baumgartel, K., Khaspekov, L. G., Lutz, B. Dyrk1A potentiates steroid hormone-induced transcription via the chromatin remodeling factor Arip4. Mol.Cell.Biol. 24 (13), 5821-5834 (2004).
  14. Mohammed, H., Taylor, C., Brown, G. D., Papachristou, E. K., Carroll, J. S., D’Santos, C. S. Rapid immunoprecipitation mass spectrometry of endogenous proteins (RIME) for analysis of chromatin complexes. Nat.Protoc. 11 (2), 316-326 (2016).
  15. Fonslow, B. R., Yates, J. R. Capillary electrophoresis applied to proteomic analysis. J.Sep.Sci. 32 (8), 1175-1188 (2009).

Play Video

Citer Cet Article
Tsuchiya, M., Karim, M. R., Matsumoto, T., Ogawa, H., Taniguchi, H. A Protein Preparation Method for the High-throughput Identification of Proteins Interacting with a Nuclear Cofactor Using LC-MS/MS Analysis. J. Vis. Exp. (119), e55077, doi:10.3791/55077 (2017).

View Video