A construct encoding TMEM184A with a GFP tag at the carboxy-terminus designed for eukaryotic expression, was employed in assays designed to confirm the identification of TMEM184A as a heparin receptor in vascular cells.
When novel proteins are identified through affinity-based isolation and bioinformatics analysis, they are often largely uncharacterized. Antibodies against specific peptides within the predicted sequence allow some localization experiments. However, other possible interactions with the antibodies often cannot be excluded. This situation provided an opportunity to develop a set of assays dependent on the protein sequence. Specifically, a construct containing the gene sequence coupled to the GFP coding sequence at the C-terminal end of the protein was obtained and employed for these purposes. Experiments to characterize localization, ligand affinity, and gain of function were originally designed and carried out to confirm the identification of TMEM184A as a heparin receptor1. In addition, the construct can be employed for studies addressing membrane topology questions and detailed protein-ligand interactions. The present report presents a range of experimental protocols based on the GFP-TMEM184A construct expressed in vascular cells that could easily be adapted for other novel proteins.
Identification of candidate proteins for novel functions often depends upon affinity-based isolation protocols followed by partial sequence determination. Recent examples of newly identified proteins include transmembrane protein 184A (TMEM184A), a heparin receptor identified after heparin affinity interactions1, and TgPH1, a pleckstrin homology domain protein that binds phosphoinositide PI(3,5)P22. Other novel protein identification involves direct sequence analysis of peptides such as that by Vit, et al. who used transmembrane peptides to identify protein products from previously uncharacterized genes3. Similarly, identification of novel protein sequences can be accomplished using bioinformatics searching of previously characterized protein families such as identification of new 4TM proteins4. Examination of aquaporin family gene sequences has also yielded the identification of new members with novel functions5. After identification, analysis of protein function is typically a next step which can sometimes be examined using a specific assay of protein function such as in the aquaporin case.
When possible, function of a newly identified protein can be examined with specific enzymatic or similar in vitro function assays. Because many functions of novel proteins depend on complex interactions that occur only in intact cells or organisms, in vitro assays are not always effective. However, the in vivo assays must be designed in such a way that they depend on the gene sequence. In cell culture, and/or simple model organisms, knockdown can provide supporting evidence for the protein/function identification6. With novel proteins identified as noted above, it is often insufficient to simply knock down a protein to confirm function, and the design of in vivo functional assays that depend on gene sequence becomes important for the characterization of novel proteins.
The recent identification of TMEM184A as a heparin receptor (that modulates proliferation in vascular smooth muscle and inflammatory responses in endothelial cells) using affinity chromatography and MALDI MS1,7 provided an opportunity to develop a collection of assays after knockdown yielded results consistent with the identification. A recent review confirmed that heparin interacts specifically with many growth factors, their receptors, extracellular matrix components, cell adhesion receptors, and other proteins8. In the vascular system, heparin and heparan sulfate proteoglycans (containing heparan sulfate chains similar in structure to heparin) interact with several hundred proteins9. To functionally confirm that TMEM184A was involved with heparin uptake and binding, techniques that employed the gene construct for TMEM184A were developed. The present report includes a collection of assays based on a GFP-TMEM184A construct for use in confirming the identity of TMEM184A as a heparin receptor.
1. Design of a GFP-protein Construct
2. GFP-TMEM184A Expression in Vascular Cells
3. Visualization of GFP-TMEM184A Localization
4. Rhodamine-Heparin Binding and Colocalization with GFP-TMEM184A-transfected Cells
5. Fluorescence Resonance Energy Transfer from GFP-TMEM184A to Rhodamine-Heparin
6. Live-cell Imaging of Rhodamine-Heparin Uptake
7. Isolation of GFP-TMEM184A and GFP from Cultured Cells
8. In Vitro Heparin Binding Assay
While, in theory, transfection of any DNA construct into cells could be accomplished with lipophilic transfection reagents, previous reports indicate more effective transfection of GFP constructs into endothelial cells using electroporation12. The protocol provided here typically achieved GFP-construct expression in greater than 80% of the primary-derived endothelial cells and smooth muscle cells used. Design of the construct employed used a commercially available system that could deliver this construct rapidly. The major intended use was focused on location issues, therefore correct delivery to the membrane, along with optimal eukaryotic protein expression and continued construct production were primary considerations. Other considerations could include: different location of the GFP for differently localized proteins or proteins with a C-terminus that is part of a folded region, the possibility of wanting to remove the GFP (adding a protease cleavage site), and a secondary affinity site. The latter would provide alternate ways of purifying the GFP construct and stabilizing it on a surface for the binding assay. To confirm staining patterns for different commercial antibodies against TMEM184A, vascular cells expressing GFP-TMEM184A were compared to identical cells stained with the commercial antibodies. The length of time after transfection impacts distribution of GFP-TMEM184A, which appeared to accumulate over at least 72 h. The length of time after transfection resulting in optimal expression varies by cell type and should be optimized for each technique. Over time, more GFP label was in the peri-nuclear region. Depending on handling, GFP bleaching also occurred. The results indicated GFP-TMEM184A at the cell surface and in peri-nuclear and other vesicle structures similar to localization observed with TMEM184A antibody staining (Figure 1). The primary cells in Figure 1 were imaged 24 h after transfection, while cloned A7r5 cells were imaged 48 h post transfection. The decision to fix GFP transfected cells was made to ensure that all cells were treated identically to compare localization. Fixation likely reduced cell surface GFP fluorescence emission to some extent. The staining pattern of GFP appeared most similar to that of antibody raised against a C-terminal peptide, a logical outcome given that the GFP is at the C-terminus of the protein. Staining with an antibody targeted against a peptide in the N-terminal region was also similar, but appeared slightly more concentrated in the peri-nuclear region. Apparent differences in localization with different antibodies could be due to binding of ligand (possibly near the C-terminus in this case), which could be fixed there and limit antibody access. Alternatively, the N- and C- termini could be on opposite sides of the membrane. Possibly, newly synthesized protein would stain more effectively with an antibody relative to protein modified post-translationally. To compare total GFP-TMEM184A localization to endogenous TMEM184A, staining with antibodies to GFP provided a more accurate picture of total GFP-TMEM184A than simply imaging GFP. Images of anti-GFP antibody staining are shown in Figure 5 where the technique was also used to evaluate membrane topology.
The use of a fluorescent ligand (rhodamine-heparin) facilitated evaluation of co-localization of ligand and receptor over time, and the two labels made it possible to carry out live imaging (Figure 2 and Movie 1). Figure 2C was imaged by exciting the GFP at 405 nm, but capturing emission from the rhodamine (middle images). GFP excitation is limited at 405 nm yielding limited emission as well, but this prevented excitation of rhodamine and a false FRET signal. Similarly, the FRET-induced rhodamine emission was faint. In controls with GFP-TMEM184A expression, but no rhodamine-heparin, and others with only rhodamine-heparin there was no rhodamine emission with 405 nm excitation. Afterwards, total GFP (left images) and total rhodamine (right images) were measured using standard excitation/emission wavelengths for each fluorophore. The data in C further support the co-localization of the ligand and the GFP-TMEM184A. Rhodamine-heparin uptake in RAOEC required longer incubation as compared to A7r5 cells. No evidence for FRET was observed in cells without rhodamine-heparin or in untransfected cells. An ideal experiment would include another surface GFP-construct that should have no co-localization with the ligand.
Acquisition or recovery of function could also be accomplished with GFP-protein constructs and rhodamine-heparin. This provided the opportunity to use GFP as evidence for expression level and ligand co-localization and to quantify the interactions. Specifically, heparin uptake was increased in GFP-TMEM184A construct-transfected A7r5 cells (Figure 3). Stable knockdown cells which take up very limited rhodamine-heparin were produced1, and these provided a system where gain of function could be evaluated. Transfection of GFP-TMEM184A construct resulted in cells that could again internalize rhodamine-heparin at the level of wild-type cells or above (Figure 3). It should be noted that the "no heparin" image is of stable knockdown cells, which do express GFP as a reporter for the knockdown construct. Background fluorescence was higher in these cells, as observed in the image shown.
It is typically helpful to use isolated receptor for determination of ligand specificity to decrease the likelihood of other proteins interacting with the ligand. The use of a GFP-protein construct provides a significant advantage in this regard as the GFP tag can serve as a handle for isolation of the protein and avoids possible interactions of antibodies or other affinity reagents with additional proteins. GFP can also be expressed in identical populations of cells and isolated using the same GFP affinity procedure. This provides a control protein for ligand interaction studies. In the TMEM184A system, the GFP-TMEM184A isolated using an anti-GFP antibody affinity procedure resulted in specific, saturable heparin binding, while the control GFP did not bind any heparin (Figure 4).
Typically, GFP tags on constructs are placed at an end of a protein. The C-terminal location facilitates correct protein trafficking to a membrane. Therefore, the availability of GFP on a particular side of a membrane can provide evidence for specific topology of a membrane protein if folding and topology are not already known. Simple immunofluorescence staining with antibodies against GFP (such as in Figure 5) can provide evidence of GFP location based on antibody access in non-permeabilized cells. The anti-GFP antibodies recognize GFP even if bleached. Immunofluorescent staining shown in Figure 5 suggests significant anti-GFP staining without permeabilization of the GFP-TMEM184A transfected cells providing preliminary evidence that the GFP at the plasma membrane is extracellular. Clearly, intracellular protein in vesicles also becomes stained in permeabilized cells. FRET images in Figure 2C are consistent with this proposed topology.
Figure 1: GFP-TEMEM184A Localization in Cells Confirms TMEM184A Localization Determined by Immunofluorescence. A) BAOECs transfected with GFP-TMEM184A were fixed with 4% PFA. Nontransfected cells were either processed with ice-cold methanol (MeOH) fixing and permeabilization or 4% PFA followed by Triton X-100 permeabilization (as noted). The nontransfected cells were stained using an antibody against a C-terminal peptide from TMEM184A (CTD) or an N-terminal peptide from TMEM184A (NTD) and a secondary anti-rabbit antibody tagged with TRITC. B) Examples of cloned (A7r5) and primary (BAOSMC) smooth muscle cells were processed similarly. Please click here to view a larger version of this figure.
Figure 2: Imaging of GFP-TMEM184A with Rhodamine-Heparin. A) A7r5s electroporated with GFP-TMEM184A were treated with 100 µg/mL rhodamine-heparin for the times indicated and then fixed with 4% PFA. Images are representative of two separate experiments. B) A7r5 cells were transfected with GFP-TMEM184A and rhodamine-heparin was added with immediate live imaging. Selected frames of the movie are shown with a white vertical bar pointing to the initial localization of a GFP-coated vesicle containing rhodamine-heparin. The GFP label and the rhodamine move together. Scale bars = 2 µm. C) RAOECs treated as in A were imaged for fluorescence resonance energy transfer by exciting at 405 (GFP, for FRET) and compared to standard settings, see protocol 3.5. Panel A, and the two time points in B, were originally published in the Journal of Biological Chemistry. Pugh, R.P., et al.1. Copyright the American Society for Biochemistry and Molecular Biology. Please click here to view a larger version of this figure.
Figure 3: GFP-TMEM184A Transfection Provides Gain of Function. A) Significantly lower levels of rhodamine-heparin are seen in stable knockdown A7r5 cells compared to wild-type A7r5s, see example images. The "no heparin" image is of stable knockdown cells that express GFP as a marker of construct presence. Scale bars = 10 µm. B) Transfection of GFP-TMEM184A into both wild-type and stable knockdown cells significantly increases the rhodamine-heparin signal in these cells based on analysis of more than 50 cells/condition in three independent experiments. Error bars represent SEM. p <0.0001 based on a Tukey test. This figure was originally published in the Journal of Biological Chemistry. Pugh, R.P., et al.1. Copyright the American Society for Biochemistry and Molecular Biology. Please click here to view a larger version of this figure.
Figure 4: Isolated GFP-TMEM184A Binds Heparin. GFP-TMEM184A or GFP was isolated and bound to avidin-coated assay plates. Fluorescein-heparin was added at concentrations from 0.056 nmol through 1.111 nmol. Heparin bound was determined by measuring emission at 519 nm. GFP-TMEM184A (squares). GFP control (circles). This figure was originally published in the Journal of Biological Chemistry. Pugh, R.P., et al.1. Copyright the American Society for Biochemistry and Molecular Biology. Please click here to view a larger version of this figure.
Figure 5: GFP-TMEM184A and Membrane Topology. GFP-TMEM184A transfected cells were either fixed with 4% PFA (top) or fixed with 4% PFA and permeabilized using Triton X-100 (bottom). Cells were stained identically with anti-GFP primary antibodies and Cy3-labeled secondary antibodies. Scale bars = 10 µm. Two different experiments are shown. Secondary only-stained cells showed essentially no staining. Please click here to view a larger version of this figure.
Movie 1: Live-imaging of GFP-TMEM184A with Rhodamine-Heparin (Right click to download). A7r5 cells were treated as in Figure 2B. The movie illustrates the GFP-TMEM184A and rhodamine-heparin vesicle at the top moving together. Separate color versions in addition to the merged version of the movie are shown. The vesicle with GFP and containing rhodamine is circled.
The protocols reported here were designed to provide confirmatory evidence for the identification of TMEM184A as a heparin receptor in vascular cells1. Knockdown techniques are routinely used as one mechanism to confirm the identification of novel proteins. However, some functional loss after knockdown is typically not sufficient proof that a candidate protein is actually the correct receptor (or other functional protein). It is also important to have evidence that the candidate protein actually exhibits the function. Employing a construct for a novel gene tagged with GFP enables gain of function experiments and facilitates isolation of the tagged protein based on GFP affinity. Electroporation employed in this protocol facilitated very high transfection efficiency of the construct (greater than 80% of the cells expressed the construct). However, other transfection mechanisms could be used if electroporation is not available or not desired. There are several advantages to selecting a GFP-tagged construct for confirmation of a novel protein function. First, the GFP serves as a reporter for transfection and gene expression and it allows overexpression to be monitored through GFP if a cell line without expression of the protein is not available. Second, the GFP tag provides a tool for purification of the protein that does not depend on either ligand affinity or antibodies against peptides. Third, the GFP tag provides a tool to examine complex immunofluorescent localization visualized using antibodies generated against unique peptides in the target protein sequence to determine whether the actual gene product is similarly localized.
Gain of function assays with gene constructs are being used for a number of purposes including high-throughput screening for identification of novel protein function13. Ideally, gain of function assays would employ a well-studied cloned cell line that does not express the gene in question (the cells must still express cooperating gene products that allow function of the newly expressed gene). When using a specific GFP-tagged construct as in the present assays, it is critical to use cells in which the GFP-protein can function. Thus, the choice of cells depends on the function and, likely, on the cell type in which the function would normally occur to ensure cooperating proteins are present. GFP-tagging allows an additional way of monitoring function in the case where the fluorescence of the GFP-tagged protein can be followed as part of a functional assay (e.g., see Figures 2 and 3). One limitation to these studies would be if GFP somehow alters protein function. By linking the GFP to the C-terminus of the protein, large numbers of proteins have already been studied without an apparent functional alteration, but such a possibility does exist.
Radioisotopically labeled ligands have often been used to study ligand binding to intact cells11. However, those assays do not allow simple determination of ligand location after binding, nor do they facilitate comparisons of ligand and receptor together as in the present report. A GFP construct also provides further opportunities to examine a labeled membrane protein as here. Because of the C-terminal location of the GFP tag, it is possible to examine the location of the GFP tag in transfected cells throughout an assay. Immunofluorescence using antibodies to GFP allows comparison of GFP accessible to antibodies with and without permeabilization (Figure 5). Additional applications of GFP-TMEM184A take advantage of GFP imaging such as the colocalization with rhodamine-heparin (Figure 2). Employing FRET to allow emission from GFP to excite the rhodamine-heparin as shown in 2C provides an interesting way to evaluate binding and intracellular trafficking. Further, FRET data indicate that GFP is close enough (within 10 nm) to the rhodamine-ligand to transfer excitation. Evidence that such transfer from GFP to a ligand works has been published for parathyroid hormone tagged with tetramethyl-rhodamine14. Alternative FRET technology (photo-bleaching and/or computer-driven imaging patterns) can also be employed for more complex analysis than what is shown here as an example. Similarly, interactions of other proteins with the candidate might be examined using FRET with fluorescent tags optimized for FRET as in the EGFP/mCherry system reported by Albertazzi et al.15 and the CFP/YFP and GFP pairs used in potassium channel studies by Wang and colleagues16. Many new small fluorescent molecules are being designed, for example17. These molecules will increase the number of cases where FRET interactions between GFP-tagged proteins and fluorescent ligands can be examined. Future studies can also involve targeted changes to the gene, allowing the construct to help determine sequence specific aspects of gene function. One limitation for GFP-tagged membrane proteins is when the C-terminus of the protein is normally inside. In such cases, FRET assays with fluorescent water-soluble ligands may not be possible. However, alternative mechanisms to place GFP elsewhere in the construct might still be possible for some such proteins, and the other assays reported here could still be employed.
In addition to function, localization, and in vivo ligand interactions, a GFP-tagged protein can be isolated using an anti-GFP antibody and the isolated protein used to examine function employing in vitro assays where the GFP allows an unbiased isolation of the protein and a comparatively isolated control (free GFP). Together these assays can provide strong additional evidence needed to prove that the candidate protein functions as hypothesized.
Further, because GFP is protease resistant unless modified with sites that extend away from the compact structure18, limited protease treatment of cells should release extracellular GFP. The protease cleavage would occur in the protein to which GFP is attached or in a designed linkage region. The released product would be GFP with an extension N-terminal to the GFP sequence. Trypsin should not release GFP if the C-terminus of the protein to which GFP is attached is intracellular. A preliminary analysis of potential products could suggest a clear molecular weight pattern with a GFP-tagged protein released by trypsin. For many membrane proteins, such techniques would result in clear evidence for membrane topology by release of GFP, or lack thereof.
Together, the specific assays presented and/or proposed in this report provide a broad sampling of techniques that can be employed to examine novel proteins by starting with a fluorescently tagged construct. Such constructs can be easily obtained commercially. The opportunity to use them for a wide range of techniques makes them economically feasible for even small laboratories on limited budgets.
The authors have nothing to disclose.
Research in the Lowe-Krentz lab is supported by research grant HL54269 from the National Institutes of Health to LLK.
GFP-TMEM184A construct | OriGene | RG213192 | |
Rhodamine-Heparin | Creative PEGWorks | HP-204 | Light Sensitive |
Fluorescein-Heparin | Creative PEGWorks | HP-201 | Light Sensitive |
Mowiol | EMD Millipore | 475904-100GM | |
Paraformaldehyde (methanol free) | Thermo Sci Pierce Biotech, available through Fisher Scientific | PI28908 at Fisher | Use in Fume Hood |
Reacti-bind neutravidin plates (Avidin coated black 96 well dishes) | Thermo Sci Pierce Biotech, through Fisher Scientific | PI15510 at Fisher | Pay attention to shelf-life |
Black 96 well plates | Corning Life Sciences Plastic, purchased through Fisher Scientific | 064432 at Fisher | |
A7r5 vascular smooth muscle cell line | ATCC | CRL 1444 | Can be exchanged into MEM medium1 |
BAOEC bovine aortic endothelial cells | Cell Applications, Inc. | B304-05 | Culture as recommended initially, can be exchanged into MEM medium for continuing culture1,7 |
BAOSMC bovine aortic smooth muscle cells | Cell Applications, Inc. | B354-05 | Culture as recommended initially, can be exchanged into MEM medium for continuing culture1 |
RAOEC rat aortic endothelial cells | Cell Applications, Inc. | R304-05a | Culture as recommended initially, can be exchanged into MEM medium for continuing culture7 |
Biotinylated anti-GFP | Thermo Sci Pierce Biotech, through Fisher Scientific | MA5-15256-BTIN | |
Streptavidin-coated beads | Sigma | S1638 | |
HeBS | Available from Bio-Rad | Can be prepared in the lab. The pH is 6.8 | |
TMEM184A antibody to the N-terminus | Santa Cruz Biotechnology | sc292006 | Only known TMEM184A antibody to N-terminal region. |
TMEM184A antibody to the C-terminus | Obtained from ProSci Inc, Poway, CA | Pro Sci 5681 | ProSci used in figure 1 |
GFP antibodies | Santa Cruz Biotechnology | sc9996 | Used in figures 5 |
Secondary antibodies, labeled with TRITC or Cy3 | Jackson ImmunoResearch Laboratories, Inc, West Grove, PA | 711 025 152 (donkey anti-rabbit, TRITC) 715 165 150 (donkey anti-mouse, Cy3) |
Minimal cross-reactivity to minimize any non-specific staining. |
CHAPS | Purchased from Sigma | C5849 | Note that this specific catalog number has been discontinued. Supplier will provide information regarding replacement. |
Live imaging 35 mm dishes | MatTek (Ashland MA) | P35G-1.0 – 20 mm – C | |
Confocal Microscope | Zeiss | LSM 510 Meta with a 63X oil-immersion lens | Used for images and live-imaging in Figures 1, 2 and 3 |
Confocal Microscope | Nikon | C2+ confocal with a 60X oil-immersion lens | Used for images in Figure 5 |
Confocal Microscope | Zeiss | Zeiss LSM 880 with a 63X oil-immersion lens | Used for images in Figure 2C |
Electroporation equipment | Bio-Rad | Gene Pulser X-Cell System | |
Electroporation cuvettes | Available from MidSci | EC2L | Can also be obtained from equipment supplier |
Plate reader | TECAN | TECAN Infinite® m200 Pro plate reader | Readings in the middle of the wells rather than at the surface. |
Computer program for measuring staining intensity | Image J | https://imagej.nih.gov/ij/ Program and information available on-line |
Any appropriate program can be used. See https://theolb.readthedocs.io/en/latest/imaging/measuring-cell-fluorescence-using-imagej.html for additional detail |
Cell Culture trypsin solution | Sigma | T4174 | purchased as a 10X solution |