Here, we present a protocol to more safely and efficiently administer anesthetic gas to mice using a digital, low flow anesthesia system utilizing a syringe-driven direct injection vaporizer.
A traditional vaporizer depends on flowing gas and atmospheric pressure for passive anesthetic vaporization. Newly developed direct injection vaporizers utilize a syringe pump to directly administer volatile anesthetics into a gas stream. Unlike a traditional vaporizer, it can be used at very low flow rates, making it ideal for use on mice and rats.
The equipment’s capability to use low flow rates could result in a substantial cost savings due to the reduced need for anesthetic agents, compressed gas, and charcoal scavenging filters1. A lower flow rate means less waste of anesthetic gas and likely reduces the risk of anesthetic exposure to laboratory personnel. Thus, the high levels of precision and safety associated with direct injection vaporizers, along with a reduced need for anesthetic agents, compressed gas, and charcoal filters are beneficial for research requiring small animal anesthesia.
The goal of this protocol is to demonstrate the use of a syringe-driven direct injection vaporizer as part of a digital, low-flow anesthesia system. The direct injection vaporizer is capable of accurately delivering anesthesia at very low flow rates compared to a traditional vaporizer, making it a promising alternative for controlled gas anesthetic delivery to rodents.
There are many precision vaporizers available for veterinary use that operate between flow rates of 0.5-10 L/min2. These flow rates are not ideal for rodents, as the range is high compared to their small respiratory minute volume. High flow rates are not recommended in veterinary practice due to their promotion of hypothermia and drying of the respiratory tract3,4. Furthermore, many common veterinary vaporizer manufacturer manuals warn that high flow rates may cause an increase in the occurrence of backpressure fluctuations. It has also been shown that many standard vaporizers become inaccurate below flow rates of 500 ml/min, and this rate is regarded as a minimum flow rate in the veterinary field5-7.
An animal can be maintained on a T-piece circuit or modified bain circuit using a flow rate as low as 1.5-2.2 times the animal's minute volume8-10. These flow rates are considered sufficient to prevent rebreathing of expired gases and prevent an increase in blood carbon dioxide concentrations8. Using this flow rate recommendation, a 30 g mouse could be maintained at a flow rate as low as 52 ml/min, nearly ten times less than the accepted 500 ml/min minimum of a traditional vaporizer.
While a traditional vaporizer depends on gas flow and atmospheric pressure for passive anesthetic vaporization, a direct injection vaporizer measures the total fresh gas flow and injects the vapor directly into the gas stream2. Some direct injection vaporizers utilize a syringe pump to administer anesthetic into the gas stream. Computerized controls allow these systems to automatically adjust the syringe pump speed to inject the volume of liquid agent required to reach the desired concentration of anesthetic. Syringe driven vaporizers are available and approved for clinical and pediatric use, and many similar configurations are regarded as anesthetic conserving devices in clinical practice11-16. Shortly after their approval, anesthetic conserving devices with syringe pump vaporizers were adapted for use in animal studies8,17,18. Unlike a traditional vaporizer, a direct injection system utilizing a syringe pump is not limited by a minimum flow rate in order to maintain accuracy. For this reason, this technology is ideal for use in rodent anesthesia and other instances where low flow rates are necessary. The benefits and potential cost savings associated with this vaporizer design inspired the development of new anesthesia systems designed specifically for rodents1,19,20. This new system also incorporates a built-in air pump, allowing the user to administer anesthesia without requiring a compressed gas source. As an additional benefit, the system is pre-calibrated for use with both isoflurane and sevoflurane. With the introduction of this vaporizer technology in the laboratory animal field, it is now possible to anesthetize small laboratory animals at flow rates closer to recommended levels without the need for compressed gas.
All studies were completed in accordance with regulatory and institutional guidelines. The animal aspects of this study were evaluated by the Kent Scientific Corporation Animal Use Program, approved by the Purdue Animal Care and Use Committee (PACUC), and performed in accordance with the Guide for the Care and Use of Laboratory Animals22.
Note: The low-flow digital anesthesia system used in this protocol is equipped with an integrated pulse oximeter.
1. Set Up the Low-flow Anesthesia System with Integrated Pulse Oximeter
2. Configure the Settings
3. Begin Anesthesia Delivery
4. Begin Physiological Monitoring
5. Remove the Animal
Animals
3 adult C57/BL6NTac female mice (Taconic, age 6-7 weeks; weight 15+/-1 g) were anesthetized and maintained with 1.3-1.5% isoflurane while heart rate, oxygen saturation, and respiration rate were monitored. All mice were Murine Pathogen Free as determined by routine vendor testing before arrival to the facility. The animals were group-housed in microisolation caging and provided free-access to standard rodent chow and water by bottle.
Isoflurane Usage
The low-flow anesthesia system measures the amount of anesthetic agent remaining in the syringe during use. The volume in the syringe, as measured by the anesthesia system, was noted as the animal was transferred to the nose cone, and again at the end of the maintenance period. The final volume was subtracted from the initial volume to quantify the amount of anesthetic consumed during the maintenance period (Figure 1).
Physiological Parameters
Heart rate, SpO2, and respiration rate were monitored during maintenance via pulse oximetry (Figures 2–4). Body temperature was maintained at 37.5 °C via an infrared warming pad. Each mouse was successfully maintained at low flow rates of 100 ml/min of room air under a surgical plane of anesthesia for 60 min, as determined by a lack of withdrawal reflex from an interdigital pinch. The mouse did not awake or respond to interdigital pinches applied intermittently during the maintenance period. The animals' heart rates (Figure 2), blood oxygen (Figure 3), and respiratory rate (Figure 4) remained relatively stable throughout the study. Due to animal and sensor positioning, the respiratory rate signal from Mouse 1 and Mouse 3 was intermittent and the measurement was interrupted. When the animal's positioning was adjusted, the signal improved and the measured respiratory rate was comparable to others at similar time points. The low-flow digital anesthesia system used an average of 0.63 ml of isoflurane during the 60 min of maintenance period (Figure 1).
Figure 1: Isoflurane Usage. The amount of isoflurane used in ml for three different mice over 1 hr of anesthesia maintenance using the digital low-flow anesthesia system. Please click here to view a larger version of this figure.
Figure 2: Heart Rate. The heart rate of three mice in beats per min (bpm) 5-60 min after initial anesthetic induction with the digital low-flow anesthesia system. Please click here to view a larger version of this figure.
Figure 3: Oxygen Saturation. The blood oxygen saturation levels (%) of three mice 5-60 min after initial anesthetic induction with the digital low-flow anesthesia system. Please click here to view a larger version of this figure.
Figure 4: Respiration Rate. The respiration rate of three mice in breaths per min (bpm) 5-60 min after initial anesthetic induction with the digital low-flow anesthesia system. Please click here to view a larger version of this figure.
The digital low-flow anesthesia system allows the user to effectively anesthetize mice at very low flow rates without the use of any compressed gas. This differs greatly from standard passive vaporizers, most of which require a compressed gas source at minimum flow rates of about 500 ml/min. Standard vaporizers utilize dials that lack precision between gradations, and they must be serviced annually to maintain accuracy. A syringe driven anesthetic system can provide a specific concentration of anesthetic at the set flow rate to calculate the exact necessary speed of the syringe pump. Routine calibrations are unnecessary, resulting in additional cost and time savings.
The recommended minimum flow rate to maintain an animal on a non-rebreathing circuit is 1.5-2.2 times the animal's minute volume. The flow rate of 100 ml/min used in this study exceeded this minimum to deliver sufficient anesthetic to the animals. The flow rate settings are critical for this anesthetic delivery technique, as the flow rate is directly related to the amount of isoflurane used for a given timeframe. When used at low flow rates, this technique can greatly reduce the amount of isoflurane required during use, while the animal is still anesthetized effectively1,19-21.
New equipment costs between traditional vaporizers and low-flow digital vaporizers are comparable. However, the digital low-flow anesthesia system has the ability to deliver either isoflurane or sevoflurane. This eliminates the need for designated isoflurane and sevoflurane precision vaporizers, reducing initial equipment costs for groups using both anesthetic agents. Recently published comparisons between vaporizer technologies have suggested cost savings over time when using a low-flow digital vaporizer1,19,20. The results of these comparisons could be used to approximate potential cost savings over the course of a year. Assuming typical usage settings performed in 2 hr increments, 5 days a week for 52 weeks, a traditional isoflurane vaporizer will consume 3.8 L of isoflurane, or twelve 250 ml bottles. A low-flow digital vaporizer used at the same frequency would consume just 0.32 L, or two 250 ml bottles. Charcoal canister consumption is also reduced. Assuming that each canister holds 50 g of scavenged waste gas, a traditional vaporizer will fill approximately 21 charcoal canisters over the course of a year. In comparison, a low-flow digital vaporizer will require 6 or fewer. A traditional vaporizer would require approximately 5 large gas cylinders per year, each with a capacity of 9,500 L. The internal air pump, available in some models of digital low-flow vaporizers, eliminates the requirement for compressed gas. If compressed gas were to be used, the system would use only 1 cylinder per year1.
The technique can be modified based on need. Low-flow digital vaporizers allow the user to adjust anesthetic depth quickly and precisely. If the anesthetic depth must be increased or decreased, the user can increase the anesthetic concentration in 0.1% increments using the dial on the top of the system. The flow rate can also be adjusted as needed throughout the procedure. This protocol utilizes a 2 ml syringe, though larger syringe sizes are available for longer procedures. The internal air pump offers users the option to anesthetize animals without requiring a compressed gas source. For procedures requiring compressed gas or supplemental oxygen, the user has the option to connect a gas source to the low-flow system rather than using surrounding air. The user can continue to deliver the selected air source throughout the procedure, or can switch between the internal pump and a compressed gas source as needed. For example, the user may set the system to deliver room air via the internal pump during induction and maintenance, but deliver supplemental oxygen during recovery.
Though there are many advantages to using a low-flow digital vaporizer, there are limitations as well. Because a flush valve is not included, manually flushing the chamber with clean air before opening is the only way to purge the induction chamber. This system is designed to operate at low flow rates only and does not deliver anesthesia above flow rates of 800 ml/min, where traditional vaporizers can be used with flow rates up to 10 L/min. This particular system is therefore only suitable for small animal species. Additionally, the system holds less anesthetic agent compared to a traditional vaporizer. There may be situations where the syringe must be refilled during a procedure. However, delays during refilling can be reduced by pre-filling a second syringe nearby to replace the empty syringe. Syringe sizes up to 10 ml are available to reduce the need to refill syringes mid-procedure. Finally, unlike a traditional vaporizer, the low-flow digital vaporizer requires electricity. Batteries are available for use in instances where electrical power is unavailable or in the event of a power outage.
Previous studies have shown that low-flow digital systems consume less isoflurane, carrier gas, and charcoal canisters compared to a traditional anesthesia system1,19,20. The reduction in scavenged anesthetic gas also could identify a reduction in waste anesthetic gas, though further work is needed in these areas. Infrared gas spectroscopy can be used to monitor waste isoflurane production, and dosimeter badges can be used to quantify isoflurane exposure to laboratory personnel in future comparisons.
In summary, this technique for anesthetic delivery will be beneficial to groups performing rodent anesthesia due to improved safety, efficacy, and precision over traditional systems.
The authors have nothing to disclose.
The authors have no acknowledgements.
Anesthetic Equipment | |||
SomnoSuite Low-Flow Digital Anesthesia System | Kent Scientific Corporation | SOMNO | Includes anti-spill, anti-vapor bottle top adapter; Y adapter tubing; charcoal scavenging filter |
MouseSTAT Pulse Oximeter & Heart Rate Monitor | Kent Scientific Corporation | SS-MSTAT-Module | Integrated into SomnoSuite |
MouseSTAT Mouse Paw Sensor | Kent Scientific Corporation | MSTAT-MSE | |
2mL Glass Syringe | Kent Scientific Corporation | SOMNO-2ML | |
Low-Cost Induction Chamber, 0.5L | Kent Scientific Corporation | SOMNO-0705 | |
Low Profile Facemask, x-small | Kent Scientific Corporation | SOMNO-0304 | |
Animal Warming | |||
PhysioSuite Physiological Monitoring System with RightTemp Homeothermic Warming | Kent Scientific Corporation | PS-RT | Includes infrared warming pad, rectal probe, and pad temperature probe |
Anesthetic Agents and Medications |
|||
Isoflurane (250mL bottle) | Piramal Healthcare | ||
Puralube Opthalmic Ointment | Perrigo |