This procedure describes how to encapsulate cytochrome c (cyt. c) in silica (SiO2) sol-gels, process these gels to form bioaerogels, and use these bioaerogels to rapidly recognize nitric oxide (NO) through a gas-phase reaction. This type of protocol may aid in the future development of biosensors or other bioanalytical devices.
Applications such as sensors, batteries, and fuel cells have been improved through the use of highly porous aerogels when functional compounds are encapsulated within the aerogels. However, few reports on encapsulating proteins within sol–gels that are processed to form aerogels exist. A procedure for encapsulating cytochrome c (cyt. c) in silica (SiO2) sol-gels that are supercritically processed to form bioaerogels with gas-phase activity for nitric oxide (NO) is presented. Cyt. c is added to a mixed silica sol under controlled protein concentration and buffer strength conditions. The sol mixture is then gelled and the liquid filling the gel pores is replaced through a series of solvent exchanges with liquid carbon dioxide. The carbon dioxide is brought to its critical point and vented off to form dry aerogels with cyt. c encapsulated inside. These bioaerogels are characterized with UV-visible spectroscopy and circular dichroism spectroscopy and can be used to detect the presence of gas-phase nitric oxide. The success of this procedure depends on regulating the cyt. c concentration and the buffer concentration and does not require other components such as metal nanoparticles. It may be possible to encapsulate other proteins using a similar approach making this procedure important for potential future bioanalytical device development.
Cytochrome c (cyt. c) is a key electron-transfer protein involved in the body's cellular respiration reactions. It has been shown to be involved in apoptosis, a controlled form of cell death, and it can detect such small toxic molecules as nitric oxide and carbon monoxide1-3. Nitric oxide (NO) plays a role in a variety of physiological processes taking place in the nervous, cardiovascular, and immune systems. While cyt. c typically requires an aqueous environment buffered to pH-neutral values to remain structurally intact and active, research has shown that cyt. c can retain its structure and function in solid materials known as aerogels under certain conditions4-9.
Aerogels are highly porous materials often formed by synthesizing sol-gel metal oxides(While metal oxide aerogels are very common, carbon and other types of aerogels have been synthesized. One example is InP aerogels)10 and drying these sol-gels in such a way that the porous solid matrix is left unchanged11-14. All of the pores in solid aerogels result in much available surface area making aerogels extremely useful for any applications where surface reactions are important. When chemical or biochemical functionality is assembled within the aerogel nanoarchitecture, it has been shown that the physical porosity and enhanced surface area of the aerogels help to improve sensors, as well as electrodes for battery, fuel cell, and supercapacitor applications11,15-23. In order to dry aerogels in a way that leaves the porous solid matrix unchanged, it is typical to remove the solvent that remains in the pores after sol-gel synthesis through supercritical solvent extraction. Any pore collapse that may be caused by surface tension forces as a solvent evaporates from the gel are minimized because in supercritical drying, a liquid-vapor interface never forms.
There are many reports of heme proteins such as cyt. c being encapsulated in sol-gels that have been kept wet or that have been dried ambiently24-30. Reports of encapsulating biomolecules in sol-gels that are then dried supercritically to form aerogels are rarer due to the necessary processing that can be detrimental to the structure of many proteins. In the case of cyt. c, certain conditions make it possible to retain the ability of cyt. c to detect and respond to gas-phase nitric oxide within aerogels. Once stabilized in the aerogel, the high-quality pore structure of the aerogel facilitates the reaction between cyt. c and nitric oxide4,8,9. Cyt. c can be encapsulated within aerogels by first associating it in multiple layers around gold or silver nanoparticles in solution4-8. These multilayered superstructures serve to protect the protein within the aerogel matrix. In the most recent approach that we have developed, when the protein concentration and buffer strength are controlled along with other synthetic conditions, cyt. c retains integrity within the aerogels even without metal nanoparticle initial association9.
The synthesis begins as many aerogel syntheses begin by mixing silica sol–gel precursors for a set period of time. It is after a set mixing time that cyt. c is added as a buffered solution into the mixture. Gelation then occurs to form a porous silica solid structure in which the pores are filled with water, methanol, remaining reactants and byproducts. This liquid that fills the pores can be rinsed out with various solvents through a series of solvent exchanges, the last exchanges with liquid carbon dioxide taking place within a critical point drying apparatus kept at low temperature. Bringing the gels above the critical temperature (31.1 °C) of carbon dioxide facilitates the formation of a supercritical fluid inside the pressurized apparatus that can be vented to form dry, highly porous aerogels. The relatively low temperature required for carbon dioxide to form a supercritical fluid is advantageous compared to other solvents because it keeps the protein below a temperature at which it could denature.
Our metal nanoparticle-free approach to encapsulating cyt. c in aerogels is advantageous because it is a simple procedure that may lead to the development of a more generally applicable protocol for encapsulating other proteins as well. Many proteins may not interact with metal nanoparticles in the same way that cyt. c does and metal nanoparticle synthesis or purchase adds additional time and expense to the procedure. The few reports on encapsulating proteins in aerogels make the development of this procedure a significant step forward to finding a more general procedure for encapsulating other proteins in aerogels that may aid in potential future bioanalytical devices.
The protocol section of this manuscript outlines how to synthesize silica sol-gels, encapsulate cyt. c into these sol-gels, dry these composite sol-gels to form aerogels, characterize these bioaerogels using UV-visible and circular dichroism spectroscopy and detect the presence of gas-phase nitric oxide with these bioaerogels. Cyt. c has been successfully encapsulated in aerogels when first dissolved in 4.4 to 70 mM aqueous solutions of phosphate buffer. However, optimized protein structure in aerogels has been found to result when encapsulating 40 mM phosphate buffered solutions of cyt. c producing loaded aerogel cyt. c concentrations in the range of 5 to 15 μM9. Therefore, the protocol given below is to synthesize aerogels using 40 mM phosphate buffered solutions of cyt. c resulting in a loaded cyt. c concentration in the aerogels of 15 μM.
Safety glasses or goggles, laboratory coat, and laboratory gloves should be worn at all times during the procedure. Never operate the critical point drying apparatus without safety glasses or goggles. All solutions containing tetramethoxysilane, methanol, ethanol, acetone, and ammonia should be processed within a fume hood.
1. Make Buffer and Cyt. c Solutions
2. Synthesize Silica (SiO2) Sol
3. Prepare Gel Molds
Note: There is time to prepare the gel molds while the silica sol mixture is stirring in step 2.6.
4. Prepare Cyt. c-silica Sol-gels
5. Supercritically Dry Cyt. c-silica Sol-gels
6. Characterize Cyt. c-silica Aerogels with UV-visible and Circular Dichroism (CD) Spectroscopy
7. Detect Presence of Nitric Oxide (NO) Gas with Cyt. c-silica Aerogels
CAUTION: Working with NO is dangerous and all NO gas should be handled in a fume hood or exhausted into a fume hood. Sustained exposure to NO is toxic to tissues as highly poisonous nitrogen dioxide and/or nitrogen tetroxide will form when NO comes in contact with air. Heat and corrosive fumes are also produced when NO comes in contact with water.
The described procedure results in aerogels containing viable cyt. c. As specified at the end of the introduction, cyt. c can be encapsulated from aqueous buffer solutions that range from 4.4 to 70 mM phosphate. Examples of cyt. c-silica (cyt. c-SiO2) aerogels made from solutions containing different buffer concentrations are shown in Figure 4. All gels are relatively translucent, with the gels made from 70 mM buffer the most opaque.
A comparison of the spectroscopy of cyt. c under different conditions is shown in Figure 5. A typical spectrum (Figure 5c) shows the large Soret peak around 408 nm for cyt. c-SiO2 aerogels and is very similar to the spectrum of cyt. c in solution (Figure 5a). In addition, a spectrum of cyt. c encapsulated within aerogels with metal nanoparticles is also shown (Figure 5b) and the cyt. c-SiO2 aerogel spectrum is similar to this spectrum as well. When the cyt. c-SiO2 aerogel is exposed to nitric oxide, a typical shifting of the Soret peak is observed (Figure 5d).
The UV-vis spectra for gels made from cyt. c solutions in varying buffer concentrations are shown in Figure 6. All of these gels show characteristic UV-visible spectroscopic features indicating that cyt. c is not in a denatured state within the gels. However, the decreased translucency of the gels made from 70 mM buffer results in a lower signal-to-noise ratio for these spectra.
The CD spectra of cyt. c-SiO2 aerogels are similar to the spectra of cyt. c encapsulated within aerogels with metal nanoparticles, while both types of aerogel spectra differ from a spectrum of cyt. c in buffered solution (Figure 7).
Figure 8 shows a typical nitric oxide monitoring response for cyt. c-SiO2 aerogels and corresponding aerogels that also contain metal nanoparticles in addition to cyt. c. The difference between the absorbance at 414 nm and that at 408 nm is seen to increase and then decrease when the gels are exposed to nitric oxide and then nitrogen respectively in succession.
If the supercritical carbon dioxide is not released at a slow enough rate, the viability of the cyt. c within the formed aerogels will be compromised. This is revealed by comparing resulting UV-visible spectra after forming gels by releasing the carbon dioxide at different rates (Figure 9).
Figure 1: Critical point drying apparatus. The critical point drying apparatus shown from the (A) front and (B) back with the transfer boat and apparatus door shown next to the back of the apparatus.
Figure 2: Cardboard platform. The assembled cardboard platform for holding an aerogel in the path of an instrument's beam.
Figure 3: Nitric oxide sensing set-up. The nitric oxide sensing set-up is shown including (A) the fume hood enclosed 10% nitric oxide, 90% nitrogen cylinder, tubing, and T-valve, and (B) the cuvette with inserted needles.
Figure 4: Sample cyt. c-SiO2 aerogels. Aerogels encapsulating 15 μM cyt. c in 4.4 mM, 40 mM, and 70 mM potassium phosphate buffer are shown in comparison to a dime from left to right. These aerogels are approximately 0.2-0.5-cm high. Reprinted with permission9.
Figure 5: Cyt. c-SiO2 aerogel spectroscopy. Visible spectra of 15 μM cytochrome c in (a) 50 mM phosphate buffer solution; (b) Au(5-nm)~cyt. c-SiO2 aerogel; (c) cyt. c–SiO2 aerogel (exposed to air); (d) cyt. c-SiO2 aerogel (exposed to nitric oxide for 3.5 min). These representative spectra of each type of gel are offset for clarity, and the dashed line denotes the position of the Soret peak of cyt. c in buffer. While each spectrum is of 15 μM cyt. c, the gel thicknesses (or heights) are only 0.2-0.5-cm compared to the 1-cm solution cuvet resulting in a higher solution absorbance. Reprinted with permission9.
Figure 6: Aerogel spectroscopy as encapsulated buffer concentration is varied. Averaged UV-visible spectral absorbance of aerogels divided by gel path length for gels encapsulating 15 μM cyt. c in 70 mM (black) (average of 4 spectra), 40 mM (red, dotted) (average of 8 spectra), and 4.4 mM (green, dashed) (average of 9 spectra) potassium phosphate buffer. Reprinted with permission9.
Figure 7: Aerogel circular dichroism spectroscopy. Circular dichroism spectra of cyt. c in sodium phosphate buffered solution (solid), two representative spectra of cyt. c-SiO2 aerogels (dashed), and two representative spectra of Au(5-nm)~cyt. cSiO-2 aerogels (dotted). Reprinted with permission9.
Figure 8: Nitric oxide detection with cyt. c-SiO2 aerogels. Monitoring the shift (ΔA = A414 nm – A408 nm) in the Soret intensity of cyt. c (solid red) and Au~cyt. c (dashed blue) encapsulated in SiO2 composite aerogel nanoarchitectures as gas flow is toggled between nitrogen (where Soret peak maximum is at ~408 nm) and nitric oxide (where Soret peak maximum is at ~414 nm). Each curve is an average of 3-4 trials, with two of the cyt. c-SiO2 trials monitored at ΔA = A414 nm – A407 nm since the initial Soret peak maximum was at 407 nm for these trials. Reprinted with permission9.
Figure 9: Effect of supercritical fluid release time. Averaged UV-visible spectral absorbance divided by gel path length for cyt. c-SiO2 aerogels encapsulating 10 μM cyt. c in 50 mM phosphate buffer in which the supercritically dried aerogels were made by either releasing supercritical carbon dioxide over 45 min (solid, black (average of 9 spectra)) or 7 min (dashed, red (average of 4 spectra)). Reprinted with permission9.
As described, this procedure has consistently produced viable cyt. c encapsulated within aerogels. The concentration of cyt. c within the aerogels can be varied from 5 to 15 μM and the buffer concentration of the initial cyt. c solution encapsulated within the aerogels can be varied from 4.4 to 70 mM phosphate without severe detrimental effects on protein viability. However, the peak center and peak width of the characteristic cyt. c Soret peak in aerogels are closest to what they are for cyt. c in solution when cyt. c is encapsulated in aerogels from solutions of 40 mM buffer9.
The synthesis of the cyt. c-SiO2 aerogels is affected by the age of some of the starting reagents. Methanol, tetramethoxysilane, and ammonium hydroxide solution are all hygroscopic and should be replaced every one-to-two months. The increased water that builds up in these reagents over time affects the gel structural characteristics and the sol-to-gel transition time.
When performing supercritical drying, the critical point drying apparatus's transfer boat can hold up to eighteen 0.5 cm thick, 1 cm diameter gels. As outlined in the protocol section, a specific filling and draining procedure should be followed to transfer carbon dioxide into the sol-gels. It is important to note that at the beginning of the draining protocol, the draining mixture of carbon dioxide and acetone flows at such a high rate that the drain tube freezes stiff with moisture condensing to ice on the outside. The mixture draining out contains some water since the acetone is not anhydrous and this water may occasionally freeze to an extent that the drain tube actually clogs. It is necessary to watch for such clogs and to listen for a stoppage of flow. The drain valve should be closed for a few min so the clog will melt if a clog is detected. In the worst case scenario, if the drain valve is not closed, a clog can cause so much pressure to build up that the drain tube forcefully pops off the apparatus. After the first few drain periods, the majority of the acetone will have been rinsed out of the apparatus, and the occurrence of wet ice chunks will decrease dramatically. The discharge will progressively resemble dry ice as the draining protocol continues with any residual evidence of acetone presence (such as scent) becoming undetectable by the end of the draining process.
After the carbon dioxide in the apparatus has transitioned from liquid to supercritical fluid and the venting process has begun, it is necessary to release the fluid at a slow rate over at least 45 min as indicated in the procedure9. A higher rate of release can decrease the viability of cyt. c (as shown in Figure 9) within the aerogels and the aerogels themselves may actually break apart as the fluid rushes to escape from the gels. In general, even when the aerogels remain intact after opening the apparatus door, it is important to handle them carefully and gently as they are brittle and can break easily.
The control silica gels that are poured alongside the cyt. c-SiO2 gels are used after supercritical drying to determine if the carbon dioxide transfer into the gels was successful. Sometimes the cyt. c-SiO2 gels may appear cloudy and it is important to determine if this is due to incomplete solvent transfer or if it may have to do with the concentration of the cyt. c or buffer encapsulated within the gels. If the silica gels without cyt. c appear to have a homogeneous, translucent appearance throughout, this can be taken as evidence that the solvent transfer occurred completely even if the cyt. c-SiO2 gels have some cloudiness to them. Cloudiness within the silica gels without cyt. c after drying indicates that some acetone remained inside the gels during the venting.
As indicated in the protocol section, important safety precautions need to be taken when working with nitric oxide (NO). To detect NO using the aerogels, it is necessary to seal the cuvette very well and to exhaust the gas flowing over the aerogels into a fume hood. Alternatively, the whole spectrophotometer can be moved into a fume hood along with the NO gas cylinder as an added precaution to limit exposure to NO gas. On contact with air NO will immediately produce the highly poisonous nitrogen dioxide, nitrogen tetroxide or both. NO can also react with water to produce heat and corrosive fumes. Therefore, sustained exposure to NO may result in direct tissue toxicity.
When using the cyt. c-SiO2 aerogels to detect the presence of nitric oxide, the Soret band will initially be at ~408 nm and will shift to ~414 nm in the presence of nitric oxide. After switching back to nitrogen, the Soret band should reverse back to being centered at ~408 nm. It may also be possible to use the cyt. c-SiO2 aerogels to detect the presence of other ligands such as carbon monoxide27.
Different published procedures include an added step of combining gold or silver nanoparticles with cyt. c in solution prior to mixing with the sol and supercritically drying to form aerogels4-8. Comparing the UV-visible spectroscopy of cyt. c encapsulated in aerogels with metal nanoparticles to that of cyt. c encapsulated in aerogels without metal nanoparticles shows that these two types of encapsulation techniques produce cyt. c of similar viability within the aerogels (Figure 5). However, the cyt. c encapsulated with metal nanoparticles is slightly more stable than cyt. c encapsulated without metal nanoparticles within the aerogels9. The CD spectra of both types of cyt. c aerogels are also similar, although both differ from the spectrum of cyt. c in buffer indicating some unfolding of cyt. c within the aerogels (Figure 7). Previous reports on cyt. c encapsulated in aerogels suggest that the circular dichroism spectroscopy is most likely assessing the outermost layer of protein, unfolded upon contact with the silica gel, within either metal nanoparticle-nucleated multilayered cyt. c structures or loosely organized structures that form when no metal nanoparticles are present in aerogels4,9. The majority of the cyt. c within either type of self-organized structure inside the aerogels remains folded as measured by the UV-visible spectroscopy though. The advantage of the protocol described herein sans nanoparticles is that expensive purchase or time-consuming synthesis of metal nanoparticles is not necessary. Proteins have not often been successfully encapsulated within aerogels, and so this procedure is important in that it may lead to the development of a more general method for encapsulating other proteins in aerogels with potential significance for future bioanalytical devices.
The authors have nothing to disclose.
Support for this work and/or publication was provided by the Science Institute of Fairfield University's College of Arts and Sciences, Fairfield University's Faculty Research Grant, a Cottrell College Science Award from the Research Corporation for Science Advancement, Fairfield University's College of Arts & Sciences and Fairfield University's Chemistry & Biochemistry Department. We gratefully acknowledge Jean Marie Wallace for much helpful insight and advice in regards to this general research area. In addition, we extend a very special thank you to all past, current, and future undergraduate researchers of the Harper-Leatherman Research Lab.
Potassium phosphate, monobasic | Fisher Scientific | P285-500 | Certified ACS (also possible to use sodium phosphate monobasic) |
Potassium phosphate dibasic anhydrous | Fisher Scientific | P288-500 | Certified ACS (also possible to use sodium phosphate dibasic) |
Water | Millipore Direct-Q | 18 MΩ cm | |
pH meter and electrode | Denver Instrument | UB-10 | |
Cytochrome c from equine heart | Sigma Aldrich | C7752-100MG | ≥95% based on Mol. Wt. 12,384, used as received and stored at -20°C |
Glass scintillation vials | Wheaton | 03-341-25J | 20 mL, O.D. x height (with cap): 28 mm x 61 mm |
Disposable cuvette | Fisher Scientific | 14-955-126 | methacrylate, 10 mm x 10 mm x 45 mm |
Ultraviolet Visible Spectrophotometer | Shimadzu | UV-1800 | Uses UVProbe v 2.33 software |
Circular dichroism spectrometer (or spectropolarimeter) | JASCO | J-810 | |
Isotemp Laboratory Refrigerator | Fisher Scientific | ||
Polypropylene disposable beakers | Fisher Scientific | 01-291-10 | 50 mL |
Tetramethylorthosilicate (also known as tetramethoxysilane, TMOS) | Sigma Aldrich | 218472-500G | 98% purity |
Methanol | Fisher Scientific | A457-4 | GC Resolv grade |
Ammonium hydroxide solution | Sigma Aldrich | 221228-25ML-A | ACS reagent, 28.0-30.0% |
General purpose polypropylene scintillation vials | Sigma Aldrich | Z376825-1PAK | 16 mm x 57 mm, volume size 6.5 mL, slice off bottom with sharp knife or razor |
generic plastic wrap | various | ||
Parafilm M laboratory wrapping film | Fisher Scientific | S37440 | |
Plastic syringe plunger | various | use syringe plunger from 3 mL syringe | |
Ethyl alcohol | Acros | 61509-0040 | Absolute, 200 proof, 99.5% A.C.S. reagent |
Acetone | Fisher Scientific | A949-4 | HPLC grade |
Critical point drying apparatus | Quorum Technologies | E3000 Series | |
Circulator | Fisher Scientific | Isotemp 3016 | |
Carbon dioxide cylinder | Tech Air | siphon tube | |
Micrometer | Central Tool Company | ||
GRAMS/AI 8.0 software | Thermo Electron Corporation | ||
Nitrogen cylinder | Tech Air | Another inert gas could be substituted | |
10% nitric oxide/90% nitrogen cylinder | Airgas | ||
Tygon tubing | various | ||
T-switch valve | various | ||
syringe needles | various |