Summary

Kombine Metodolojileri kullanan Akson Dallanman ve Nöronal Morfogenez sırasında Plazma Membran Teslimat Rolü tanımlayın

Published: March 16, 2016
doi:

Summary

Light microscopy techniques coupled with biochemical assays elucidate the involvement of SNARE-mediated exocytosis in netrin-dependent axon branching. This combination of techniques permits identification of molecular mechanisms controlling axon branching and cell shape change.

Abstract

During neural development, growing axons extend to multiple synaptic partners by elaborating axonal branches. Axon branching is promoted by extracellular guidance cues like netrin-1 and results in dramatic increases to the surface area of the axonal plasma membrane. Netrin-1-dependent axon branching likely involves temporal and spatial control of plasma membrane expansion, the components of which are supplied through exocytic vesicle fusion. These fusion events are preceded by formation of SNARE complexes, comprising a v-SNARE, such as VAMP2 (vesicle-associated membrane protein 2), and plasma membrane t-SNAREs, syntaxin-1 and SNAP25 (synaptosomal-associated protein 25). Detailed herein isa multi-pronged approach used to examine the role of SNARE mediated exocytosis in axon branching. The strength of the combined approach is data acquisition at a range of spatial and temporal resolutions, spanning from the dynamics of single vesicle fusion events in individual neurons to SNARE complex formation and axon branching in populations of cultured neurons. This protocol takes advantage of established biochemical approaches to assay levels of endogenous SNARE complexes and Total Internal Reflection Fluorescence (TIRF) microscopy of cortical neurons expressing VAMP2 tagged with a pH-sensitive GFP (VAMP2-pHlourin) to identify netrin-1 dependent changes in exocytic activity in individual neurons. To elucidate the timing of netrin-1-dependent branching, time-lapse differential interference contrast (DIC) microscopy of single neurons over the order of hours is utilized. Fixed cell immunofluorescence paired with botulinum neurotoxins that cleave SNARE machinery and block exocytosis demonstrates that netrin-1 dependent axon branching requires SNARE-mediated exocytic activity.

Introduction

Recent estimates suggest that the human brain contains 1011 neurons with 1014 synaptic connections1, highlighting the importance of axon branching in vivo. Extracellular axon guidance cues such as netrin-1 guide axons to appropriate synaptic partners and stimulate axonal branching, thereby increasing synaptic capacity2-5. Netrin-1-dependent axonal arborization involves substantial plasma membrane expansion6, which we hypothesized requires delivery of additional membrane components via SNARE complex dependent exocytic vesicle fusion7.

Investigating the role of SNARE-mediated exocytosis in netrin-1 dependent axon branching is complicated by several factors. First, the heterogeneity of cortical neurons increases the sample size required to identify significant effects, complicating single cell techniques like imaging. Second, although biochemical techniques permit observation of changes that occur at the population level, they lack the temporal and spatial resolution necessary to localize plasma membrane expansion to the axon in the time frame of axon branching. Lastly, although axon branches form over hours, the cellular changes that contribute to axonal extension may begin within minutes and occur on the order of seconds, thus extending the temporal scope for experimental consideration.

We outline a multi-technique approach that addresses these diverse temporal and spatial scales of exocytosis and axon branching, and thus enhances our understanding of the fundamental cellular mechanisms. Utilizing these approaches provides evidence that supports a critical role for SNARE-mediated exocytosis in axon branching.

Protocol

Araştırma etiği Beyanı: Burada detaylı hayvanları da içeren tüm deneylerde kural ve Hayvan Bakım UNC Komitesi tarafından yapılan düzenlemelere ve bakım ve laboratuvar hayvanlarının kullanımı için NIH standartlarına tabidir. 1. Hazırlık ve Dissosiye Kortikal nöronlar Kaplama CO servikal dislokasyon tarafından takip 2 inhalasyon zamanlı hamile kadın öldürülür. Her yarımkürede embriyonik gün 15.5 (E15.5) fareler ve microdiss…

Representative Results

In vitro biyokimyasal teknikler kullanarak. Nöronların bir popülasyonda SDS-dirençli tuzak komplekslerinin miktarını tahlil Şekil 1 SNAP-25, syntaxin1A ve VAMP2 için incelenir SDS-dirençli tuzak kompleksi deneyinde elde edilen Western blot tamamlanmasının ardından göstermektedir. Bazal hücre membranında TIRF mikroskopi tek hücre bireysel ekzositik füzyon olayları yüksek çözünürl…

Discussion

Axon branching is a fundamental neurodevelopmental process and underpins the vast neuroconnectivity of the mammalian nervous system. Understanding the mechanisms involved in localized plasma membrane expansion is integral to our understanding of both normal and pathological neurodevelopment. The use of a multipronged approach incorporating both population level and single cell level methodologies enhances reproducibility and increases spatial and temporal resolution without compromising population level analysis. At the …

Divulgations

The authors have nothing to disclose.

Acknowledgements

RO1-GM108970 (SLG) ve F31-NS087837 (CW): Bu çalışma Ulusal Sağlık Enstitüleri tarafından desteklenmiştir.

Materials

6-well tissue culture treated plates Olympus Plastics 25-105
glass coverslips Fisher scientific 12-545-81 12CIR-1.5;must be nitric acid treated for 24 hours, rinsed in DI H2O 2X, and dried prior to use. Must be coated with 1mg/mL Poly-d-lysine and rinsed prior to plating cells
Amaxa nucleofection solution Lonza VPG-1001 100ml/transfection
Amaxa Nucleofector/electroporator Lonza program O-005
35mm Glass bottom live cell imaging dishes Matek Corporation p356-1.5-14-C must be coated with 1mg/mL Poly-d-lysine and rinsed prior to plating cells
Olympus IX81-ZDC2 inverted microscope Olympus
Lambda LS xenon lamp Sutter Instruments Company
Environmental Stage top incubator Tokai Hit
100x 1.49 NA TIRF objective Olympus
Andor iXon EM-CCD Andor
Odyssey Licor Infrared Imaging System LI-COR Odyssey CL-X Used for scanning blots
Image studio software suite LI-COR Used for scanning on the Odyssey Infrared system; Image studio lite used for offline analysis of blots
Metamorph for Olympus Molecular devices, LLC version 7.7.6.0 Software used for all imaging and the analysis of DIC timelapse
CELL TIRF control software Olympus Software used to control lasers for TIRF imaging
Fiji (Image J) NIH ImageJ Version 1.49t
60x Plan Apochromat 1.4 NA objective Olympus
40x 1.4 NA Plan Apochromat objective Olympus
Neurobasal media GIBCO 21103-049 Base solution for both serum free and trypsin quenching media
Supplement B27 GIBCO 17504-044 500ml/50mLs Serum free media and Trypsin Quenching media
L-Glutamine 35050-061 1mL/50mLs Serum free media
Bovine serum albumin Bio Basic Incorporated 9048-46-8 10% solution in 1XPBS for blocking coverslips; 5% solution in TBS-T for blocking nitrocellulose membranes.
10X  trypsin Sigma 59427C
HEPES CELLGRO 25-060-Cl
Dulbecco's Phosphate Buffered Saline (DPBS)+ Ca + Mg Corning 21-030-cm
Fetal bovine serum Corning/CELLGRO 35-010-CV
Hank's Balanced Salt Solution (HBSS) Corning/CELLGRO 20-021-CV
NaCL Fisher scientific BP358-10
EGTA Fisher scientific CAS67-42-5
MgCl2 Fisher scientific BP214-500
TRIS HCl Sigma T5941-500
TRIS base Fisher scientific BP152-5
N-Propyl Gallate MP Biomedicals 102747
Glycerol Photometric grade Acros Organics 18469-5000
Glycerol (non optics grade) Fisher scientific CAS56-81-5
B-mercaptoethonal Fisher scientific BP176-100
SDS Fisher scientific BP166-500
Distilled Water  GIBCO 152340-147
Poly-D-Lysine Sigma p-7886 Dissolved in sterile water at 1mg/mL
Botulinum A toxin BoNTA List Biological Laboratories 128-A
Rabbit polyclonal anti human VAMP2 Cell signaling 11829
Mouse monoclonal anti rat Syntaxin1A Santa Cruz Biotechnology sc-12736
Goat polyclonal anti human SNAP-25 Santa Cruz Biotechnology sc-7538
Mouse monoclonal anti human βIII-tubulin  Covance MMS-435P
Alexa Fluor 568 and Alexa Fluor 488 phalloidin, or Alexa Fluor 647 Invitrogen
LI-COR IR-dye secondary antibodies LI-COR P/N 925-32212,P/N 925-68023, P/N 926-68022 800 donkey anti-mouse, 680 donkey anti rabbit, 680 donkey anti goat
0.2um pore size nitrocellulose membrane Biorad 9004-70-0
Tween-20 Fisher scientific BP337-500
Methanol Fisher scientific S25426A
Bromphenol Blue Sigma B5525-5G
Sucrose Fisher scientific S6-212
Paraformaldehyde Fisher scientific O-4042-500
Triton-X100 Fisher scientific BP151-500
TEMED Fisher scientific BP150-20
40% Bis-Acrylimide Fisher scientific BP1408-1
Name Company Catalog Number Comments
Alternative Validated Antibodies
Mouse Monoclonal Anti-Syntaxin HPC-1 clone Sigma Aldrich S0664
 Mouse Monoclonal Synaptobrevin 2 (VAMP2) Synaptic Systems 104-211
Mouse Monoclonal SNAP25 Synaptic Systems 111-011

References

  1. Drachman, D. A. Do we have brain to spare?. Neurology. 64 (12), 2004-2005 (2005).
  2. Serafini, T., et al. Netrin-1 Is Required for Commissural Axon Guidance in the Developing Vertebrate Nervous System. Cell. 87 (6), 1001-1014 (1996).
  3. Métin, C., Deléglise, D., Serafini, T., Kennedy, T. E., Tessier-Lavigne, M. A role for netrin-1 in the guidance of cortical efferents. Development. 124 (24), 5063-5074 (1997).
  4. Kennedy, T. E., Serafini, T., de la Torre, J. R., Tessier-Lavigne, M. Netrins are diffusible chemotropic factors for commissural axons in the embryonic spinal cord. Cell. 78 (3), 425-435 (1994).
  5. Sun, K. L. W., Correia, J. P., Kennedy, T. E. Netrins: versatile extracellular cues with diverse functions. Development. 138 (11), 2153-2169 (2011).
  6. Pfenninger, K. H. Plasma membrane expansion: a neuron’s Herculean task. Nature Reviews Neuroscience. 10 (4), 251-261 (2009).
  7. Winkle, C. C., McClain, L. M., Valtschanoff, J. G., Park, C. S., Maglione, C., Gupton, S. L. A novel Netrin-1-sensitive mechanism promotes local SNARE-mediated exocytosis during axon branching. The Journal of Cell Biology. 205 (2), 217-232 (2014).
  8. Viesselmann, C., Ballweg, J., Lumbard, D., Dent, E. W. Nucleofection and Primary Culture of Embryonic Mouse Hippocampal and Cortical Neurons. Journal of Visualized Experiments. (47), e2373 (2011).
  9. Miesenböck, G., De Angelis, D. A., Rothman, J. E. Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature. 394 (6689), 192-195 (1998).
  10. Hayashi, T., et al. Synaptic vesicle membrane fusion complex: action of clostridial neurotoxins on assembly. The EMBO Journal. 13 (21), 5051-5061 (1994).
  11. Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry. 72, 248-254 (1976).
  12. Centonze Frohlich, V. Phase Contrast and Differential Interference Contrast (DIC) Microscopy. Journal of Visualized Experiments. (17), (2008).
  13. Blasi, J., et al. Botulinum neurotoxin A selectively cleaves the synaptic protein SNAP-25. Nature. 365 (6442), 160-163 (1993).

Play Video

Citer Cet Article
Winkle, C. C., Hanlin, C. C., Gupton, S. L. Utilizing Combined Methodologies to Define the Role of Plasma Membrane Delivery During Axon Branching and Neuronal Morphogenesis. J. Vis. Exp. (109), e53743, doi:10.3791/53743 (2016).

View Video