Light microscopy techniques coupled with biochemical assays elucidate the involvement of SNARE-mediated exocytosis in netrin-dependent axon branching. This combination of techniques permits identification of molecular mechanisms controlling axon branching and cell shape change.
During neural development, growing axons extend to multiple synaptic partners by elaborating axonal branches. Axon branching is promoted by extracellular guidance cues like netrin-1 and results in dramatic increases to the surface area of the axonal plasma membrane. Netrin-1-dependent axon branching likely involves temporal and spatial control of plasma membrane expansion, the components of which are supplied through exocytic vesicle fusion. These fusion events are preceded by formation of SNARE complexes, comprising a v-SNARE, such as VAMP2 (vesicle-associated membrane protein 2), and plasma membrane t-SNAREs, syntaxin-1 and SNAP25 (synaptosomal-associated protein 25). Detailed herein isa multi-pronged approach used to examine the role of SNARE mediated exocytosis in axon branching. The strength of the combined approach is data acquisition at a range of spatial and temporal resolutions, spanning from the dynamics of single vesicle fusion events in individual neurons to SNARE complex formation and axon branching in populations of cultured neurons. This protocol takes advantage of established biochemical approaches to assay levels of endogenous SNARE complexes and Total Internal Reflection Fluorescence (TIRF) microscopy of cortical neurons expressing VAMP2 tagged with a pH-sensitive GFP (VAMP2-pHlourin) to identify netrin-1 dependent changes in exocytic activity in individual neurons. To elucidate the timing of netrin-1-dependent branching, time-lapse differential interference contrast (DIC) microscopy of single neurons over the order of hours is utilized. Fixed cell immunofluorescence paired with botulinum neurotoxins that cleave SNARE machinery and block exocytosis demonstrates that netrin-1 dependent axon branching requires SNARE-mediated exocytic activity.
Recent estimates suggest that the human brain contains 1011 neurons with 1014 synaptic connections1, highlighting the importance of axon branching in vivo. Extracellular axon guidance cues such as netrin-1 guide axons to appropriate synaptic partners and stimulate axonal branching, thereby increasing synaptic capacity2-5. Netrin-1-dependent axonal arborization involves substantial plasma membrane expansion6, which we hypothesized requires delivery of additional membrane components via SNARE complex dependent exocytic vesicle fusion7.
Investigating the role of SNARE-mediated exocytosis in netrin-1 dependent axon branching is complicated by several factors. First, the heterogeneity of cortical neurons increases the sample size required to identify significant effects, complicating single cell techniques like imaging. Second, although biochemical techniques permit observation of changes that occur at the population level, they lack the temporal and spatial resolution necessary to localize plasma membrane expansion to the axon in the time frame of axon branching. Lastly, although axon branches form over hours, the cellular changes that contribute to axonal extension may begin within minutes and occur on the order of seconds, thus extending the temporal scope for experimental consideration.
We outline a multi-technique approach that addresses these diverse temporal and spatial scales of exocytosis and axon branching, and thus enhances our understanding of the fundamental cellular mechanisms. Utilizing these approaches provides evidence that supports a critical role for SNARE-mediated exocytosis in axon branching.
Statement of research ethics: All experiments involving animals detailed herein are subject to the rules and regulations of the UNC Committee on Animal Care and to NIH standards for the care and use of laboratory animals.
1. Preparation and Plating of Dissociated Cortical Neurons
2. SNARE Complex Formation Assay
Note: SDS-resistant SNARE complexes were processed and analyzed as originally described10 with the modifications detailed below. For validated alternative antibodies to the ones used here, see the materials section.
3. Imaging Exocytic Events via TIRF Microscopy
Note: This protocol requires specialized microscopy equipment including an environmental chamber to maintain temperature, humidity and CO2, an inverted TIRF microscope equipped with an epifluorescent illumination, a high magnification/ high numerical aperture (NA) TIRF objective, an automated XYZ stage, and a sensitive Charge Coupled Device (CCD) detector. This protocol uses a fully automated inverted microscope equipped with a 100x 1.49NA TIRF objective a solid state 491 nm laser and an Electron Multiplying CCD (EM-CCD). All equipment is controlled by imaging and laser control software. Prior to the beginning the imaging protocol power on the environmental chamber, stage, lamp, computer, and camera.
4. Differential Interference Contrast (DIC) Timelapse Microscopy of Axon Branching
Note: A complete protocol and demonstration for a general approach to DIC imaging is available12. While this protocol utilizes DIC, other transmitted light microscopy methods may be used for the same purposes (for example: phase contrast).
5. Toxin Manipulations and Fixed Cell Immunofluoresence
Utilizing in vitro biochemical techniques to assay the amount of SDS-resistant SNARE complexes in a population of neurons. Figure 1 shows the resulting western blot following completion of the SDS-resistant SNARE complex assay probed for SNAP-25, syntaxin1A and VAMP2.
TIRF microscopy at the basal cell membrane provides high resolution images of individual exocytic fusion events in single cells. Figure 2A demonstrates the image analysis methodology for identifying VAMP2-phluorin mediated exocytic events. The inset shows a single exocytic event as vesicle fusion occurs and as VAMP2-phluorin diffuses within the plasma membrane. Figure 2B shows an example of an exocytic event occurring over time (seconds) in a cortical neuron. Zoomed insets denote the soma, an axon branch and an axonal growth cone showing the spatial utility of this assay. Circles denote single exocytic fusion events, which can be seen via TIRF microscopy.
Timelapse DIC imaging of netrin stimulated axon branching reveals the timing of axon branch formation. Figure 3 depicts the formation of an axon branch in real time following netrin stimulation. White arrowheads denote the initial protrusion from a branch site. Black arrowheads denote a fully formed, stable branch of at least 20μm measuring from the main axon to the branch tip. Netrin dependent increases in axon branching occurs following netrin dependent increases in exocytic fusion.
Fixed cell immunocytochemistry combined with pharmacological inhibition of SNARE activity shows that SNARE mediated exocytosis is a requisite for cortical axon branching. Figure 4A, outlines a step by step process of branch tracings performed in ImageJ. Figure 4B shows representative images of cortical neurons at 3DIV. Conditions are as follows: untreated, stimulated with 250 ng/ml netrin, or treated with BoNTA and 250 ng/ml netrin for 24 hr.
Figure 1. Using the SDS Resistance of SNARE Complexes as a Quantifiable Metric of SNARE Formation In Vitro. A representative western blot probed for SNARE complex members VAMP2, Syntaxin1A and SNAP-25 and the loading control BIII tubulin. Both SNARE proteins in complex and identifiable monomers are shown. Please click here to view a larger version of this figure.
Figure 2. Live Cell Imaging and Quantification of Exocytic Vesicle Fusion Events in Cortical Neurons. (A) Step by step outline of the exocytic vesicle fusion image analysis as it was manually performed using ImageJ. (B) Inset panels show a single VAMP2-pHlourin vesicle fusion event as it occurs over time. The second panel featuring a TIRF microscopy image of a whole cortical neuron expressing VAMP2-pHlourin at 2DIV. Dotted line boxes denote the regions of interest as shown below: soma, axon branch, and an axonal growth cone. Circles with the regions of interest denote single vesicle fusion events. Please click here to view a larger version of this figure.
Figure 3. Long Term Live Cell DIC Imaging Reveals Timing of Netrin-1 Dependent Axon Branching. DIC live cell images of a cortical neuron showing the formation of axon branches in response to netrin stimulation. White arrowheads denote points of initial protrusion prior to the neurite reaching 20 μm in length. Black arrowheads denote bonafide branches (length ≥20 μm). Time denoted as hour:min. Please click here to view a larger version of this figure.
Figure 4. Fixed Cell Immunofluorescence Coupled with Toxin Inhibition of Exocytosis Shows that Exocytosis is Required for Netrin-1 Dependent Axon Branching. (A) Outline of the tracing and analysis steps for quantification of axon branching in a netrin stimulated cortical neuron at 3DIV. (B) Representative images of cortical neurons at 3DIV of each experimental condition: untreated, stimulated with 250 ng/mL netrin, or treated with 10 nM BoNTA toxin plus 250 ng/ml netrin. Green is F-Actin (phalloidin), red is βIIItubulin. Arrows denote points of axon branches ≥20 μm in length. Please click here to view a larger version of this figure.
Solution | Recipe |
Homogenization buffer | 10 mM HEPES-NaOH pH 7.4,150 mM NaCI, 1 mM EGTA. Plus necessary protease and phosphatase inhibitors dependent upon cell type |
2x Sample buffer | 60 mM Tris-HCI pH 6.75, 5% (v/v) fI-mercaptoethanol, 2% (w/v) SDS, 10% (w/v) glycerol, 0.007% (w/v) bromophenol blue |
PHEM fixative | 60 mM PIPES pH 7.0, 25mM HEPES pH 7.0, 10mM EGTA pH 8.0, 2 mM MgCl2, 0.12 M Sucrose, 4% PFA |
Mounting Media | 20 mM TRIS pH 8.0, 0.5% N-Propyl-gallate, 90% high quality glycerol, MilliQ H2O |
10X SDS Running Buffer | Dissolve 30.0 g of Tris base, 144.0 g of glycine, and 10.0 g of SDS in 1,000 ml of H2O, pH 8.3. Dilute to 1x. |
10X Transfer Buffer | Dissolve 30.3 g Tris for 250 mM and 144.1 g Glycine for 1.92 M solution in 1 L H2O; (for 1 L 1x buffer add 100ml 10x solution to 200 ml MeOH and 700 ml cold DI H2O) |
Serum Free Media (SFM) | 50 ml: 0.5 ml L-Glutamine, 1 ml B27, 48.5 ml Neurobasal Media |
Trypsin Quenching Media (TQM) | 50 ml: 0.5 ml L-Glutamine, 2.5 ml FBS, 47 ml Neurobasal Media |
TRIS Buffered Saline | 50 mM Tris-Cl, pH 7.5, 150 mM NaCl in 1 L H2O; (For TBS-T add 1 ml Tween-20) |
Table 1. Solutions
Axon branching is a fundamental neurodevelopmental process and underpins the vast neuroconnectivity of the mammalian nervous system. Understanding the mechanisms involved in localized plasma membrane expansion is integral to our understanding of both normal and pathological neurodevelopment. The use of a multipronged approach incorporating both population level and single cell level methodologies enhances reproducibility and increases spatial and temporal resolution without compromising population level analysis. At the single cell level, utilizing both fixed and live cell approaches to examine netrin-dependent axon branching provides a three-fold benefit: the ability to collect a large sample size across multiple experiments, temporal resolution with DIC imaging, and spatiotemporal resolution of exocytic fusion using TIRF microscopy.
The SDS-resistant SNARE complex assay allows a measurement of SNARE activity that accounts for the heterogeneity of cortical neurons in culture. SNARE complexes are extremely stable; whereas most other protein complexes are dissociated by the addition of SDS. SNARE complexes are SDS resistant, though not temperature resistant. This property makes quantifying the amount of both the SNARE complex and SNARE monomers possible. Due to the necessity of running multiple SDS-PAGE gels at varying acrylamide percentages, seeding cells at a density no less than 6 million per well in order to acquire sufficient amounts of protein is important. As this assay requires common laboratory reagents, the ability to perform western blots and the antibodies for endogenous SNARE proteins, this is a relatively cost effective and simple method for producing quantifiable data on exocytic SNARE complex formation. Although omitted from this protocol, this method may be used in conjunction with a variety of pharmacological manipulations and multiple cell types. The main limitation to this method is the necessity for a relatively high number of cells. Those working in model systems where cell number and thus protein is limiting should take this into consideration.
TIRF microscopy-based imaging of exocytic events in single neurons allows the visualization of individual exocytic fusion events of VAMP2-pHluorin producing quantifiable data that can be categorized spatially or temporally. For example, exocytic events can be compared throughout the entire neuron or to specific cellular locations such as the soma, the axon or other neurites. Furthermore the frequency of fusion for single exocytic events at various cellular locations can be calculated from frame rate. This imaging protocol may be performed on any commercially available inverted TIRF system equipped with a stage incubator, an appropriate laser source, and an EMCCD camera, although adjustments to laser power and exposure time are necessary on a per cell basis. This protocol can be used in conjunction with any cell type that is suitable for transfection, although dividing cell lines must be seeded appropriately to allow for the isolation of single cells for imaging. Careful consideration of post processing for images is recommended, as the high level of background noise in live cells can make identifying fusion events difficult. Utilizing the z-projection function in ImageJ, we created average z projections of image stacks then subtracted the resulting image from the original stack. This process significantly decreased background, increasing the signal-to ratio, and simplifying identification of fusion events.
Time lapse DIC imaging is a simple and effective method for long-term spatiotemporal examination of neuronal morphogenesis in vitro. As transmitted light illumination has little negative impact on neurons, this approach can, in theory, be utilized for long timecourses on the order of days. Utilizing the multi area acquisition function increases the number of cells that can be simultaneously imaged, but this number will be constrained by the chosen frame rate and the distance between regions of interest. Thus, balancing the desired number of cells and required frame rate for the phenomena of interest to optimize the experimental throughput is necessary.
In both live cell imaging protocols, the use of a stage incubator, which maintains CO2, humidity and temperature, allows for acute stimulation or pharmacological manipulation in real time though we did not take advantage of this possibility. Thus the live cell imaging approaches outlined here allow an effective means by which the spatial and temporal aspects of netrin dependent axon branching, and other cellular phenomena can be examined in real time.
Our SNARE complex biochemistry assays and live cell imaging produced quantifiable measures of population level and single cell level changes. Fixed cell immunocytochemistry, coupled with pharmacological manipulations of exocytic activity allowed us to both retrieve temporal information about axon branching and connect branching to the requirement of exocytosis. Dependent on which pharmacological manipulation is desired, it may be necessary to perform a concentration assay, to identify the most effective but least cytotoxic dose possible for cells of interest. These assays require relatively few cells and only three DIV, making them both cost and time effective.
Together, the assays outlined above are powerful tools in elucidating the roles of specific proteins in exocytic fusion and axon branching. Using this approach coupled with a genetic knockout model of the E3 ubiquitin ligase TRIM9, we showed that TRIM9 acts as a regulator of exocytosis through an interaction with SNAP25, and thus constrains axon branching7. In sum, our multi-pronged strategy to examine membrane addition during axon branching is likely to be instrumental in dissecting detailed molecular and cellular mechanisms governing plasma membrane expansion necessary to neuronal development and cell shape change.
The authors have nothing to disclose.
This work was supported by the National Institutes of Health: RO1-GM108970 (SLG) and F31-NS087837 (CW).
6-well tissue culture treated plates | Olympus Plastics | 25-105 | |
glass coverslips | Fisher scientific | 12-545-81 | 12CIR-1.5;must be nitric acid treated for 24 hours, rinsed in DI H2O 2X, and dried prior to use. Must be coated with 1mg/mL Poly-d-lysine and rinsed prior to plating cells |
Amaxa nucleofection solution | Lonza | VPG-1001 | 100ml/transfection |
Amaxa Nucleofector/electroporator | Lonza | program O-005 | |
35mm Glass bottom live cell imaging dishes | Matek Corporation | p356-1.5-14-C | must be coated with 1mg/mL Poly-d-lysine and rinsed prior to plating cells |
Olympus IX81-ZDC2 inverted microscope | Olympus | ||
Lambda LS xenon lamp | Sutter Instruments Company | ||
Environmental Stage top incubator | Tokai Hit | ||
100x 1.49 NA TIRF objective | Olympus | ||
Andor iXon EM-CCD | Andor | ||
Odyssey Licor Infrared Imaging System | LI-COR | Odyssey CL-X | Used for scanning blots |
Image studio software suite | LI-COR | Used for scanning on the Odyssey Infrared system; Image studio lite used for offline analysis of blots | |
Metamorph for Olympus | Molecular devices, LLC | version 7.7.6.0 | Software used for all imaging and the analysis of DIC timelapse |
CELL TIRF control software | Olympus | Software used to control lasers for TIRF imaging | |
Fiji (Image J) | NIH | ImageJ Version 1.49t | |
60x Plan Apochromat 1.4 NA objective | Olympus | ||
40x 1.4 NA Plan Apochromat objective | Olympus | ||
Neurobasal media | GIBCO | 21103-049 | Base solution for both serum free and trypsin quenching media |
Supplement B27 | GIBCO | 17504-044 | 500ml/50mLs Serum free media and Trypsin Quenching media |
L-Glutamine | 35050-061 | 1mL/50mLs Serum free media | |
Bovine serum albumin | Bio Basic Incorporated | 9048-46-8 | 10% solution in 1XPBS for blocking coverslips; 5% solution in TBS-T for blocking nitrocellulose membranes. |
10X trypsin | Sigma | 59427C | |
HEPES | CELLGRO | 25-060-Cl | |
Dulbecco's Phosphate Buffered Saline (DPBS)+ Ca + Mg | Corning | 21-030-cm | |
Fetal bovine serum | Corning/CELLGRO | 35-010-CV | |
Hank's Balanced Salt Solution (HBSS) | Corning/CELLGRO | 20-021-CV | |
NaCL | Fisher scientific | BP358-10 | |
EGTA | Fisher scientific | CAS67-42-5 | |
MgCl2 | Fisher scientific | BP214-500 | |
TRIS HCl | Sigma | T5941-500 | |
TRIS base | Fisher scientific | BP152-5 | |
N-Propyl Gallate | MP Biomedicals | 102747 | |
Glycerol Photometric grade | Acros Organics | 18469-5000 | |
Glycerol (non optics grade) | Fisher scientific | CAS56-81-5 | |
B-mercaptoethonal | Fisher scientific | BP176-100 | |
SDS | Fisher scientific | BP166-500 | |
Distilled Water | GIBCO | 152340-147 | |
Poly-D-Lysine | Sigma | p-7886 | Dissolved in sterile water at 1mg/mL |
Botulinum A toxin BoNTA | List Biological Laboratories | 128-A | |
Rabbit polyclonal anti human VAMP2 | Cell signaling | 11829 | |
Mouse monoclonal anti rat Syntaxin1A | Santa Cruz Biotechnology | sc-12736 | |
Goat polyclonal anti human SNAP-25 | Santa Cruz Biotechnology | sc-7538 | |
Mouse monoclonal anti human βIII-tubulin | Covance | MMS-435P | |
Alexa Fluor 568 and Alexa Fluor 488 phalloidin, or Alexa Fluor 647 | Invitrogen | ||
LI-COR IR-dye secondary antibodies | LI-COR | P/N 925-32212,P/N 925-68023, P/N 926-68022 | 800 donkey anti-mouse, 680 donkey anti rabbit, 680 donkey anti goat |
0.2um pore size nitrocellulose membrane | Biorad | 9004-70-0 | |
Tween-20 | Fisher scientific | BP337-500 | |
Methanol | Fisher scientific | S25426A | |
Bromphenol Blue | Sigma | B5525-5G | |
Sucrose | Fisher scientific | S6-212 | |
Paraformaldehyde | Fisher scientific | O-4042-500 | |
Triton-X100 | Fisher scientific | BP151-500 | |
TEMED | Fisher scientific | BP150-20 | |
40% Bis-Acrylimide | Fisher scientific | BP1408-1 | |
Name | Company | Catalog Number | Comments |
Alternative Validated Antibodies | |||
Mouse Monoclonal Anti-Syntaxin HPC-1 clone | Sigma Aldrich | S0664 | |
Mouse Monoclonal Synaptobrevin 2 (VAMP2) | Synaptic Systems | 104-211 | |
Mouse Monoclonal SNAP25 | Synaptic Systems | 111-011 |