This video article describes experimental procedures to study long-term plasticity and its associative processes such as synaptic tagging, capture and cross-tagging in the CA1 pyramidal neurons using acute hippocampal slices from rodents.
Synaptic tagging and capture (STC) and cross-tagging are two important mechanisms at cellular level that explain how synapse-specificity and associativity is achieved in neurons within a specific time frame. These long-term plasticity-related processes are the leading candidate models to study the basis of memory formation and persistence at the cellular level. Both STC and cross-tagging involve two serial processes: (1) setting of the synaptic tag as triggered by a specific pattern of stimulation, and (2) synaptic capture, whereby the synaptic tag interacts with newly synthesized plasticity-related proteins (PRPs). Much of the understanding about the concepts of STC and cross-tagging arises from the studies done in CA1 region of the hippocampus and because of the technical complexity many of the laboratories are still unable to study these processes. Experimental conditions for the preparation of hippocampal slices and the recording of stable late-LTP/LTD are extremely important to study synaptic tagging/cross-tagging. This video article describes the experimental procedures to study long-term plasticity processes such as STC and cross-tagging in the CA1 pyramidal neurons using stable, long-term field-potential recordings from acute hippocampal slices of rats.
The encoding and storage of information in the brain still remains the most significant and keenly pursued challenge in neuroscience. Over the years, long-term potentiation (LTP) and long-term depression (LTD) have emerged as the leading cellular correlates of memory1,2. These activity dependent changes, which exhibit input specificity and associativity, result in the stabilization of memory traces in the neuronal networks 1,3,4. The maintenance of the two forms of synaptic plasticity requires the synthesis of plasticity-related products (PRPs)5-10. Synapse specificity that involves the interaction of newly synthesized protein only with specific activated synapses expressing LTP or LTD, is critical to memory. This specificity is explained by the concept of ‘Synaptic Tagging and Capture’ (STC), where the PRPs interact with recently active, ‘tagged’ synapses11,12. The STC process offers a framework for associative properties of memories at the cellular level. It provides us with a conceptual basis of how short-term forms of plasticity are transformed into long-lasting forms of plasticity in an associative and time-dependent manner13.
During the process of STC, a strong tetanization in one input that leads to protein synthesis dependent late-LTP, results in the reinforcement of a protein synthesis independent early-LTP induced in another independent input on to the same population of neurons into a persistent one13. The setting of a local synaptic tag by a transient neural activity and the synthesis of the diffusible PRPs by the strong neural activity are the two key events during STC13,14. The capture of the PRPs by the recently potentiated ‘tagged’ synapses is fundamental to the maintenance of long-term potentiation. Many studies have been done to confirm the existence of STC phenomenon15-17 and identify the candidate ‘tags’18 and ‘PRPs’19. Calcium/calmodulin-dependent protein kinase II (CaMKII) and extracellular signal-regulated kinase1/2 (ERK1/2); CaMKIV, Protein Kinase M (PKM) and brain-derived neurotrophic factor (BDNF) are some of the candidate molecules for ‘tag’ and ‘PRP’ respectively19-21. The synaptic tagging model has further been expanded to include the positive associative interactions between LTP and LTD – the “synaptic cross-tagging”22. In synaptic cross-tagging, a late LTP/ LTD in one synaptic input transforms the opposite protein synthesis-independent early-LTD/LTP in an independent input into its long-lasting form or vice versa22.
The hippocampal slice preparation is the most widely used model in the studies of long-term synaptic plasticity23,24. Much of the understanding about the concepts of synaptic tagging and cross- tagging arises from the studies done in CA1 region of the hippocampus and because of the technical complexity many of the labs are still unable to study these processes. Experimental conditions for the preparation of rat hippocampal slices and the recording of stable late-LTP/LTD for extended hours are extremely important to study synaptic tagging/cross-tagging23,25,26. This article describes the detailed experimental procedures for studying long-term plasticity processes such as STC and cross-tagging in the CA1 pyramidal neurons using stable, long-term field-potential recordings from acute hippocampal slices of rats.
急性海马切片是LTP和其他功能的可塑性过程,如STC和交叉采集的研究一个很好的模型系统。它保留了大部分海马电路的层状结构的网络,可以精确电极的位置,并提供沿着,开放平台的快速神经药理学操作无血 – 脑屏障。
本文介绍了从年轻的成年大鼠编制可行的急性海马切片的方法,并利用它们来研究STC和交叉标记。先前的研究已经强调性别的动物和年龄是考虑在电生理研究中使用的重要因素。27,28因此,年轻的成年动物的完全表示成年受体功能(年龄在5-7周雄性Wistar大鼠)被使用。23不对称在左,右海马之间的连接已注意到在啮齿类29和在NMDA受体表达的主要区别有报道以及34。我们已经使用了权利海马,以便与我们以前的LTP研究一致。23,32然而,无论是海马可以只要一致性被保持被使用。
正如在任何协议,这是非常重要的执行隔离和快速切割程序,但照顾该组织没有被拉伸,损坏,呈现干或缺氧。在pH,温度和溶液的离子组成的变化可以对切片和结果的生存能力深远的影响。因此应该避免这样的变化。已经观察到,在准备步骤发生谷氨酸受体依赖性钙释放可以不可逆地影响蛋白质合成的神经组织35,36,37。使用手动组织切片机可以帮助通过允许过程中尽量减少这是非常快速地完成相比,六braslicers。然而,许多实验室也有效地使用vibraslicers有必要的预防措施,以保护片的可行性。要考虑的另一个重要因素是在开始实验前的长潜伏期。这已被注意到是真关键实现稳定在后扰动制备23中产生的切片代谢状态和激酶活化的水平。这种稳定是必要的长期记录一致性。我们这一观察再次强调,并提出约3小时的潜伏期长小时。
多种刺激参数被已知诱导LTP的,但引起在每种情况下的分子机制可能不是相同的(综述见38)。这会影响耐用性和其他特性的LTP,反过来,可影响突触标记和捕获实验的结果。因此,它验证的刺激模式和特点是非常重要的被诱发的LTP下进行实验室的条件和保持一致性。
我们一般不考虑实验中具有非常大的突触前纤维截击和最大fEPSPs小于0.5毫伏,涉及在纤维凌空实质性的变化过程中的录音也拒绝了实验。另外,虽然进行了两通路或三途径的实验中,以确保该途径独立性是重要的。此,可以进行与配对的脉冲易协议28。
接口记录系统的一个缺点是在电极上结露的液滴的过程中,由于腔室和周围环境之间的温度和湿度的差异长记录小时的形成。这些液滴需要仔细印迹不时。否则液滴滴到切片和引起干扰甚至丧失的信号。我们通常解决这家BŸ巧妙地印迹用纤细的滤纸灯芯在显微镜下引导液滴,不接触电极。然而,最好的解决办法是使用集中式加热系统,诸如由爱丁堡大学的研究人员开发了ETC系统。
在总结笔记,存在于世界各地的用于海马针对不同的实验目的,编制实验室多种方法的。每个程序的提供一些优于其它。人们需要仔细优化了协议的微小细节,以适应实验的目的。我们希望这篇文章有助于改善方法的某些方面进行研究后期联想过程,如STC和交叉捕获。
The authors have nothing to disclose.
This video article is sponsored by Cerebos Pacific Limited. This work is supported by National Medical Research Council Collaborative Research Grant (NMRC-CBRG-0041/2013) and Ministry of Education Academic Research Funding (MOE AcRF- Tier 1 – T1-2012 Oct -02).
I. Dissection Tools | |||
1. Bandage scissors | KLS Martin, Germany | 21-195-23-07 | |
B-Braun/Aesculap, Germany | LX553R | ||
2. Iris scissors | B-Braun/Aesculap, Germany | BC140R, | |
BC100R | |||
3. Bone rongeur | World Precision Instruments (WPI), Germany | 14089-G | |
4. Scalpel | World Precision Instruments (WPI), Germany; | 500236-G | |
B-Braun/Aesculap, Germany | |||
BB73 | |||
5. Scalpel blade#11 | B-Braun/Aesculap, Germany | BB511 | |
6. Sickle scaler | KLS Martin, Germany | 38-685-00 | |
7. Angled forceps | B-Braun/Aesculap, Germany | BD321R | |
8. Anesthetizing/Induction chamber | MIP Anesthesia Technologies (Now, Patterson Scientific), Oregon | AS-01-0530-LG | |
II. ACSF component chemicals | |||
1. Sodium chloride (NaCl) | Sigma-Aldrich | S5886 | |
2. Potassium chloride (KCl) | Sigma-Aldrich | P9541 | |
3. Magnesium sulphate heptahydrate (MgSO4.7H20) | Sigma-Aldrich | M1880 | |
4. Calcium chloride dihydrate (CaCl2.2H2O) | Sigma-Aldrich | C3881 | |
5. Potassium phosphate monobasic (KH2PO4) | Sigma-Aldrich | P9791 | |
6. Sodium bicarbonate (NaHCO3) | Sigma-Aldrich | S5761 | |
7. D-Glucose anhydrous (C6H12O6) | Sigma-Aldrich | G7021 | |
III. Electrophysiology Instruments | |||
1. Microscope | Olympus, Japan | Model SZ61 | |
2. Temperature Controller | Scientific Systems Design Inc. Canada | PTC03 | |
3. Differential AC Amplifier | AM Systems, USA | Model 1700 | |
4. Isolated Pulse Stimulator | AM Systems, USA | Model 2100 | |
5. Oscilloscope | Rhode & Schwarz | HM0722 | |
6. Digital-Analog Converter | Cambridge Electronic Design Ltd. Cambridge, UK | CED-Power 1401-3 | |
7. Interface Brain Slice Chamber | Scientific Systems Design Inc. Canada | BSC01 | |
8. Tubing Pump | Ismatec, Idex Health & Science, Germany | REGLO-Analog | |
9. Carbogen Flowmeter | Cole-Parmer | 03220-44 | |
10. Fiber Light Illuminator | Dolan-Jenner Industries | Fiber Lite MI-150 | |
11. Micromanipulators | Marzhauser Wetzlar, Germany | 00-42-101-0000 (MM-33) | |
00-42-102-0000 (MM-32) | |||
12. Electrodes | AM Systems, USA | 571000 (Stainless steel; 0.010, 5MΩ, 8 degree) |