Summary

仪表近期胎羊多元慢性非麻醉的录音

Published: October 25, 2015
doi:

Summary

慢性病仪表非麻醉的胎羊模型被用于研究在健康和疾病的人类胎儿发育,因为它允许外科安置和维护导管和电极,反复血液采样,物质喷射,记录的生物电活动的,以及在体内成像 。我们描述了建立这种模式所需的程序。

Abstract

The chronically instrumented pregnant sheep has been used as a model of human fetal development and responses to pathophysiologic stimuli such as endotoxins, bacteria, umbilical cord occlusions, hypoxia and various pharmacological treatments. The life-saving clinical practices of glucocorticoid treatment in fetuses at risk of premature birth and the therapeutic hypothermia have been developed in this model. This is due to the unique amenability of the non-anesthetized fetal sheep to the surgical placement and maintenance of catheters and electrodes, allowing repetitive blood sampling, substance injection, recording of bioelectrical activity, application of electric stimulation and in vivo organ imaging. Here we describe the surgical instrumentation procedure required to achieve a stable chronically instrumented non-anesthetized fetal sheep model including characterization of the post-operative recovery from blood gas, metabolic and inflammation standpoints.

Introduction

对正常和损害怀孕研究各种动物模型的存在,包括实验室啮齿类,非人类的灵长类动物和家养反刍动物。1,2,3,4,5长期仪器妊娠母羊已被广泛使用50年人类胎儿发育和答复的模型的病理生理刺激如脂多糖(LPS)。6-10以下的LPS暴露病变模仿正是由于这两个物种的一个类似的成熟信息见于早产儿脑室周围白质软化,这是。 11,12

其他妊娠并发症也已经研究的很详细,如发现产前糖皮质激素促进肺的发育13-15和了解胎儿宫内发育迟缓(IUGR)对胎儿16,17的影响。

广泛使用的胎羊模型的是由于uniq的非麻醉胎羊到外科位置和维护导管和电极的UE顺从,允许重复的血液采样,记录的生物电活动的,应用电刺激体内脑成像。18遥测也是可能的,虽然不经常使用的但由于较高的复杂性来设置,以及初始和维护成本。19

此外,胎羊模型是非常通用的仪器的许多变化是可能根据目标的措施。例如,有可能在数天来记录到周实时多元信号如胎儿呼吸运动,电脑活动,心血管反应,心电图,使用流量探针或微球体等由于局部血流的范围器官这种多功能性,已经进行了包括CARDI的发展广泛的研究ovascular系统20,21,下丘脑-垂体-肾上腺轴(HPA)22,大脑发育23和睡眠状态的发展,特别是24,缺氧的影响/窒息25,低温治疗26,炎症6-11,无论是27的组合,糖皮质激素28,29,抗抑郁药30,支气管肺发育不良(BPD)31,32,胎儿编程33,34,35,36,37,38,39或新颖的胎儿监护模式开发之前和分娩期间的名字,但调查的几个领域。40,41,42,43

提出的方法的总体目标是展示这种多功能车型的基本实现。其允许建立多种研究胎儿生理和病理生理上一体化,器官,细胞和分子水平的急性和慢性实验方案。

Protocol

动物保健随后加拿大议会关于动物饲养和批准蒙特利尔大学理事会动物保健(协议#10言语报 – 1560年)的指导方针。详细资料,使用的材料和方法是表1中提供。 1.麻醉插入一个单腔导管插入颈静脉。 稳重的使用母羊乙酰丙嗪(Atravet 10毫克/毫升)2毫克静脉内约30分钟前,麻醉诱导,以减少与该过程从而降低皮质醇水平有关应力。 施用西泮(地西泮5毫克…

Representative Results

38怀孕的时间,日期母羊仪器在128±2天的妊娠期(DGA,〜0.88妊娠,期限145 DGA)与动脉,静脉和羊膜导管和心电图(ECG)与全身麻醉下无菌技术(包括母羊和胎儿电极)。如果双胎妊娠的胎儿较大基于触诊和估计跨期直径选择;替代地,胎儿必须被启动,可以随机选择,以避免任何可能的偏差或两者胎儿可能进行检测。该过程的总持续时间为124±27分钟。胎儿上半身必须被启动的部分仍然是子宫外为…

Discussion

麻醉及手术过程中呈现所需要的建立动物模型,为研究胎儿生理和病理生理:长期仪器非麻醉的胎羊。

该协议中的四个关键步骤应该强调。首先,通过母亲侧面传递导管和电极:重要的是,这是在一次以避免任何内部器官损伤。第二,固定之前外缝合胎儿uterotomy运行地点:这是至关重要的,以防止或尽量减少羊水和前子宫闭合羊膜随后缝合的损失。三,动脉插管:胎羊动脉?…

Divulgations

The authors have nothing to disclose.

Acknowledgements

authors gratefully acknowledge funding support from the Molly Towell Perinatal Research Foundation, Canadian Institutes of Health Research (CIHR), and Fonds de Recherche du Québec – Santé (FRQS) (to MGF) and CIHR-Quebec Training Network in Perinatal Research (QTNPR) (to LDD).

The authors wish to thank Esther Simard, Marco Bosa, Carl Bernard and Carmen Movila for technical assistance.

Materials

ACE Light source Schott-Fostec A20500
Dissecting scissors Fine Science Tools 14060 – 11
Angled dissecting scissors Fine Science Tools 15006 – 09
Scalpel handle Fine Science Tools 10003 – 12 alternating dissecting tool
Curved scalpel blades #12 Fine Science Tools 10012 – 00 alternating dissecting tool
Bone scissors Fine Science Tools 16044 – 10
S & T suture tying forceps Fine Science Tools 00272 – 13
Dumont SS forceps – angled Fine Science Tools 11203 – 25 
Braided silk suture size 6-0 Teleflex Medical 07 – 30  – 10
Medical Tape transpore 3M
Ketamine hydrochloride 100 mg/ml Hospira NDC 0409 – 2051 – 05 Final Does is 80 mg/kg
Tranqui Ved Injection (xylazine 100 mg/ml) Vecdo NDC 50989 – 234 – 11 Final Does is 10 mg/kg
Reactive orange 14 Sigma – Aldrich R – 8254
Ringers Solution Components Solution is gas equilibrated with 95% O2 and 5% Co2, final pH 7.4
Sodium chloride Sigma – Aldrich S7653 Final Concentration: 118 mM
Potassium chloride Fisher Scientific P217 – 3 Final Concentration: 4.7 mM
Calcium chloride dihydrate Fisher Scientific C79 – 500 Final Concentration: 2.5 mM
Potassium phosphate monobasic Fisher Scientific P -285 Final Concentration: 1.2 mM
Magnesium sulfate J.T. Baker Jan-00 Final Concentration: 0.57 mM
4-(2-Hydroxyethyl)piperazine-1-ethanesulfonic acid (HEPES) Fisher Scientific BP 310 – 500 Final Concentration: 5.95 g/L
Glucose Sigma – Aldrich G8270 Final Concentration: 5.5 mM
LifeWindow Digicare Biomedical Technology
CED bioamplifier and ADC units Cambridge Electronic Design Limited,
Unit 4, Science Park,
Milton Road,
Cambridge CB4 0FE
ENGLAND.
Bioamp: 1902; ADC: micro1401; Data acquisition software: Spike 2, V7.13
Neurolog analog signal bioamplifier Digitimer Ltd
37 Hydeway
Welwyn Garden City
Hertfordshire, AL7 3BE, England
NL108A
ABL800Flex Radiometer Canada; 200 Aberdeen Dr, London, ON N5V 4N2
Eppendorf 5804R Eppendorf Canada; 2810 Argentia Road, #2
Mississauga, Ontario, L5N 8L2
Arrow Jugular Catheterization Set Arrow International, Inc., 2400 Bernville Road, Reading, PA 19605 USA
Atravet 10 mg/mL
Diazepam 5mg/mL
Ketamine Ketalar 100 mg/mL
Propofol 10 mg/mL
SurgiVeT Endotracheal Tubes; Smiths Medical ASD, Inc. St. Paul, MN 55112, USA
Cook Airway Exchange Catheter with RAPI-FIT Adapters Cook Critical Care 750, Bloomington IN 47402-0489 USA
Dispomed Ventilator Dispomed Ltd., 745 Nazaire-Laurin, Joliette, Quebec J6E 0L6
BD Insyte-W Becton Dickinson, Infusion Therapy Systems Inc., 9450 S State St, Sandy Utah 84070 USA 22 to 20 G; 1 in [0.9 x 25 mm] to 1.16 in [1.1 x 30 mm]
Edwards Lifesciences Ref: PX272 Pressure monitoring kit with TruWave Disposable Pressure
LifeWindow LW6000 Digicare Biomedical Technology 107 Commerce Road, Boynton Beach, FL 33426-9365 USA
Gaymar
Babcock
Polyvinyl catheters SCI (Scientific Commodities Inc.) 2 meters
2-0 Vicryl
Castroviejo scissors
electrocardiogram (ECG) LIFYY, Metrofunk Kabel-Union, Berlin, Germany four copper electrodes in single sheath, 2 meters
2-O Vicryl
3-0 Vicryl
PDS II USP
Trimethoprim sulfadoxine
Ampicillin
Stopcock Argon Medical, Cat 041220001A Double 4-way Stopcock with male luer lock
Needles Tyco Healthcare 8881202389 Monoject aluminum hub blunt needles, 22Gx, 0.7mmx 38.1mm: for fetal arterial and venous catheters
Needles Tyco Healthcare 8881202322 Monoject aluminum hub blunt needles, 16Gx, 1.6mmx38.1mm: for amniotic catheters

References

  1. Barry, J. S., Anthony, R. V. The pregnant sheep as a model for human pregnancy. Theriogenology. 69, 55-67 (2008).
  2. Morrison, J. L. Sheep models of intrauterine growth restriction: fetal adaptations and consequences. Clin Exp Pharmacol Physiol. 35, 730-743 (2008).
  3. Rees, S., Inder, T. Fetal and neonatal origins of altered brain development. Early Hum Dev. 81, 753-761 (2005).
  4. Rees, S., Harding, R., Walker, D. The biological basis of injury and neuroprotection in the fetal and neonatal brain. Int J Dev Neurosci. 29, 551-563 (2011).
  5. Moisiadis, V. G., Matthews, S. G. Glucocorticoids and fetal programming part 1: Outcomes. Nat rev Endocrinol. 10, 391-402 (2014).
  6. Wang, X., Rousset, C. I., Hagberg, H., Mallard, C. Lipopolysaccharide-induced inflammation and perinatal brain injury. Semin Fetal Neonatal Med. 11, 343-353 (2006).
  7. Gotsch, F., et al. The fetal inflammatory response syndrome. Clin Exp Obstet Gynecol. 50, 652-683 (2007).
  8. Svedin, P., Kjellmer, I., Welin, A. K., Blad, S., Mallard, C. Maturational effects of lipopolysaccharide on white-matter injury in fetal sheep. J child neurol. 20, 960-964 (2005).
  9. Nitsos, I., et al. Chronic exposure to intra-amniotic lipopolysaccharide affects the ovine fetal brain. J Soc Gynecol Investig. 13, 239-247 (2006).
  10. Yan, E., Castillo-Melendez, M., Nicholls, T., Hirst, J., Walker, D. Cerebrovascular responses in the fetal sheep brain to low-dose endotoxin. Pedia res. 55, 855-863 (2004).
  11. Dean, J. M., et al. Delayed cortical impairment following lipopolysaccharide exposure in preterm fetal sheep. Ann Neurol. 70, 846-856 (2011).
  12. Dobbing, J., Sands, J. Comparative aspects of the brain growth spurt. Early Hum Dev. 3 (1), 79-83 (1979).
  13. Liggins, G. C. Premature parturition after infusion of corticotrophin or cortisol into foetal lambs. J Endocrinol. 42, 323-329 (1968).
  14. Liggins, G. C. Premature delivery of foetal lambs infused with glucocorticoids. J Endocrinol. 45, 515-523 (1969).
  15. Liggins, G. C., Fairclough, R. J., Grieves, S. A., Kendall, J. Z., Knox, B. S. The mechanism of initiation of parturition in the ewe. Recent Prog Horm Res. 29, 111-159 (1973).
  16. Morrison, J. L. Sheep models of intrauterine growth restriction: fetal adaptations and consequences. Clin Exp Pharmacol Physiol. 35, 730-743 (2008).
  17. Robinson, J. S., Hart, I. C., Kingston, E. J., Jones, C. T., Thorburn, G. D. Studies on the growth of the fetal sheep. The effects of reduction of placental size on hormone concentration in fetal plasma. J Dev Physiol. 2, 239-248 (1980).
  18. Carmel, E., et al. Fetal brain MRI – experiences in the ovine model of cerebral inflammatory response. Repro sci. 19 (3), 347A-348A (2012).
  19. Samson, N., Dumont, S., Specq, M. L., Praud, J. P. Radio telemetry devices to monitor breathing in non-sedated animals. Respir Physiol Neurobiol. 179, 111-118 (2011).
  20. Thakor, A. S., Giussani, D. A. Effects of acute acidemia on the fetal cardiovascular defense to acute hypoxemia. Am J Physiol Regul Integr Comp Physiol. 296, R90-R99 (2009).
  21. Green, L. R., Kawagoe, Y., Homan, J., White, S. E., Richardson, B. S. Adaptation of cardiovascular responses to repetitive umbilical cord occlusion in the late gestation ovine fetus. J Physiol. 535, 879-888 (2001).
  22. Unno, N., et al. Changes in adrenocorticotropin and cortisol responsiveness after repeated partial umbilical cord occlusions in the late gestation ovine fetus. Endocrinology. 138, 259-263 (1997).
  23. Muller, T., et al. Developmental changes in cerebral autoregulatory capacity in the fetal sheep parietal cortex. J Physiol. 539, 957-967 (2002).
  24. Keen, A. E., Frasch, M. G., Sheehan, M. A., Matushewski, B., Richardson, B. S. Maturational changes and effects of chronic hypoxemia on electrocortical activity in the ovine fetus. Brain Res. 1402, 38-45 (2011).
  25. Ross, M. G., et al. Correlation of arterial fetal base deficit and lactate changes with severity of variable heart rate decelerations in the near-term ovine fetus. Am J Obstet Gynecol. 208, e281-e286 (2013).
  26. Gunn, A. J., Gunn, T. R., de Haan, H. H., Williams, C. E., Gluckman, P. D. Dramatic neuronal rescue with prolonged selective head cooling after ischemia in fetal lambs. J Clin Invest. 99, 248-256 (1997).
  27. Xu, A., Piorkowska, K., Matushewski, B., Hammond, R., Richardson, B. S. Adaptive Brain Shut-Down Counteracts Neuroinflammation in the Near-Term Ovine Fetus. 20 (3), 222A (2013).
  28. Derks, J. B., et al. A comparative study of cardiovascular, endocrine and behavioural effects of betamethasone and dexamethasone administration to fetal sheep. J Physiol Lond. 499, 217-226 (1997).
  29. Lohle, M., et al. Betamethasone effects on fetal sheep cerebral blood flow are not dependent on maturation of cerebrovascular system and pituitary-adrenal axis. J Physiol. 564, 575-588 (2005).
  30. Morrison, J. L., et al. Maternal fluoxetine infusion does not alter fetal endocrine and biophysical circadian rhythms in pregnant sheep. J Soc Gynecol Investig. 12, 356-364 (2005).
  31. Allison, B. J., et al. Ventilation of the very immature lung in utero induces injury and BPD-like changes in lung structure in fetal sheep. Pediatr Res. 64, 387-392 (2008).
  32. Rozance, P. J., et al. Intrauterine growth restriction decreases pulmonary alveolar and vessel growth and causes pulmonary artery endothelial cell dysfunction in vitro in fetal sheep. Am J Physiol Lung Cell Mol Physiol. 301, L860-L871 (2011).
  33. Fowden, A. L., Giussani, D. A., Forhead, A. J. Endocrine and metabolic programming during intrauterine development. Early hum dev. 81, 723-734 (2005).
  34. Nathanielsz, P. W., Hanson, M. A. The fetal dilemma: spare the brain and spoil the liver. J Physiol. 548, 333 (2003).
  35. Manikkam, M., et al. Fetal programming: prenatal testosterone excess leads to fetal growth retardation and postnatal catch-up growth in sheep. Endocrinology. 145, 790-798 (2004).
  36. Savabieasfahani, M., et al. Fetal programming: testosterone exposure of the female sheep during midgestation disrupts the dynamics of its adult gonadotropin secretion during the periovulatory period. Biol Reprod. 72, 221-229 (2005).
  37. Bergen, N. H., et al. Fetal programming alters reactive oxygen species production in sheep cardiac mitochondria. Clin Sci (Lond). 116, 659-668 (2009).
  38. Cox, L. A., et al. A genome resource to address mechanisms of developmental programming: determination of the fetal sheep heart transcriptome. J Physiol. 590, 2873-2884 (2012).
  39. Mahoney, M. M., Padmanabhan, V. Developmental programming: impact of fetal exposure to endocrine-disrupting chemicals on gonadotropin-releasing hormone and estrogen receptor mRNA in sheep hypothalamus. Toxicol Appl Pharmacol. 247, 98-104 (2010).
  40. Blad, S., Welin, A. K., Kjellmer, I., Rosen, K. G., Mallard, C. ECG and Heart Rate Variability Changes in Preterm and Near-Term Fetal Lamb Following LPS Exposure. Reprod Sci. 15, 572-583 (2008).
  41. Frasch, M. G., et al. Heart rate variability analysis allows early asphyxia detection in ovine fetus. Reprod Sci. 16, 509-517 (2009).
  42. Frasch, M. G., Keen, A. E., Gagnon, R., Ross, M. G., Richardson, B. S. Monitoring fetal electrocortical activity during labour for predicting worsening acidemia: a prospective study in the ovine fetus near term. PLoS One. 6, e22100 (2011).
  43. Durosier, L. D., et al. Sampling rate of heart rate variability impacts the ability to detect acidemia in ovine fetuses near-term. Front pedia. 2, 38 (2014).
  44. Danielson, L., McMillen, I. C., Dyer, J. L., Morrison, J. L. Restriction of placental growth results in greater hypotensive response to alpha-adrenergic blockade in fetal sheep during late gestation. J Physiol. 563, 611-620 (2005).
  45. Edwards, L. J., Simonetta, G., Owens, J. A., Robinson, J. S., McMillen, I. C. Restriction of placental and fetal growth in sheep alters fetal blood pressure responses to angiotensin II and captopril. J Physiol. 515 (Pt 3), 897-904 (1999).
  46. Xu, A., et al. Adaptive brain shut-down counteracts neuroinflammation in the near-term ovine fetus. Front neurol. 5, 110 (2014).
  47. Xu, A., et al. The Ovine Fetal and Placental Inflammatory Response to Umbilical Cord Occlusions With Worsening Acidosis. Reprod Sci. 22 (11), (2015).
  48. Wang, X., Durosier, L. D., Ross, M. G., Richardson, B. S., Frasch, M. G. Online detection of fetal acidemia during labour by testing synchronization of EEG and heart rate: a prospective study in fetal sheep. PLoS One. 9, e108119 (2014).
  49. Reid, A., Malone, J. Q fever in Ireland A seroprevalence study of exposure to Coxiella burnettii among Department of Agriculture workers. Occ med. 54, 544-547 (2004).
  50. Roest, H. I., Bossers, A., van Zijderveld, F. G., Rebel, J. M. Clinical microbiology of Coxiella burnetii and relevant aspects for the diagnosis and control of the zoonotic disease Q fever. Vet quart. 33, 148-160 (2013).
  51. Neill, T. J., Sargeant, J. M., Poljak, Z. The effectiveness of Coxiella burnetii vaccines in occupationally exposed populations: a systematic review and meta-analysis. Zoonoses and public health. 61, 81-96 (2014).
  52. Roest, H. I., Bossers, A., Rebel, J. M. Q fever diagnosis and control in domestic ruminants. Dev biol. 135, 183-189 (2013).
  53. Frasch, M. G., et al. Fetal body weight and the development of the control of the cardiovascular system in fetal sheep. J physilo. 579, 893-907 (2007).
  54. Rurak, D., Bessette, N. W. Changes in fetal lamb arterial blood gas and acid-base status with advancing gestation. Am J Physiol Regul Integr Comp Physiol. 304, R908-R916 (2013).
  55. Frasch, M. G., et al. Fetal body weight and the development of the control of the cardiovascular system in fetal sheep. J physiol. 579, 893-907 (2007).
  56. Frasch, M. G., et al. Measures of acidosis with repetitive umbilical cord occlusions leading to fetal asphyxia in the near-term ovine fetus. Am J Obstet Gynecol. 200, 200.e1-207.e1 (2009).
  57. The ESHRE Capri Workshop Group. Multiple gestation pregnancy. Hum reprod. 15, 1856-1864 (2000).
  58. Frasch, M. G. Re The perinatal development of arterial pressure in sheep: effects of low birth weight due to twinning. Reproductive sciences (Thousand Oaks, Calif.). 15, 863-865 (2008).
  59. Hancock, S. N., Oliver, M. H., McLean, C., Jaquiery, A. L., Bloomfield, F. H. Size at birth and adult fat mass in twin sheep are determined in early gestation. J Physiol. 590, 1273-1285 (2012).
  60. Wassink, G., Bennet, L., Davidson, J. O., Westgate, J. A., Gunn, A. J. Pre-existing hypoxia is associated with greater EEG suppression and early onset of evolving seizure activity during brief repeated asphyxia in near-term fetal sheep. PLoS One. 8, e73895 (2013).
  61. Mathai, S., et al. Acute on chronic exposure to endotoxin in preterm fetal sheep. Am J Physiol Regul Integr Comp Physiol. 304, R189-R197 (2013).
  62. Heuij, L. G., et al. Synergistic white matter protection with acute-on-chronic endotoxin and subsequent asphyxia in preterm fetal sheep. J neuroinflam. 11, 89 (2014).
  63. Gagnon, R., Challis, J., Johnston, L., Fraher, L. Fetal endocrine responses to chronic placental embolization in the late-gestation ovine fetus. Am J Obstet Gynecol. 170, 929-938 (1994).
  64. Miller, S. L., Supramaniam, V. G., Jenkin, G., Walker, D. W., Wallace, E. M. Cardiovascular responses to maternal betamethasone administration in the intrauterine growth-restricted ovine fetus. Am J Obstet Gynecol. 201, 613.e1-613.e8 (2009).
  65. Regnault, T. R., et al. The relationship between transplacental O2 diffusion and placental expression of PlGF, VEGF and their receptors in a placental insufficiency model of fetal growth restriction. J Physiol. 550, 641-656 (2003).
  66. Wallace, J. M., Aitken, R. P., Cheyne, M. A. Nutrient partitioning and fetal growth in rapidly growing adolescent ewes. J reprod and fertil. 107, 183-190 (1996).
  67. Rakers, F., et al. Effects of early- and late-gestational maternal stress and synthetic glucocorticoid on development of the fetal hypothalamus-pituitary-adrenal axis in sheep. Stress. 16, 122-129 (2013).
  68. Jiang, Y., et al. The sheep genome illuminates biology of the rumen and lipid metabolism. Science. 344, 1168-1173 (2014).
  69. Begum, G., et al. Epigenetic changes in fetal hypothalamic energy regulating pathways are associated with maternal undernutrition and twinning. FASEB J. 26, 1694-1703 (2012).
  70. Byrne, K., et al. Genomic architecture of histone 3 lysine 27 trimethylation during late ovine skeletal muscle development. Anim Genet. 45, 427-438 (2014).
  71. Lie, S., et al. Impact of embryo number and maternal undernutrition around the time of conception on insulin signaling and gluconeogenic factors and microRNAs in the liver of fetal sheep. Am J physiol Endocrinol. 306, E1013-E1024 (2014).
  72. Nicholas, L. M., et al. Differential effects of maternal obesity and weight loss in the periconceptional period on the epigenetic regulation of hepatic insulin-signaling pathways in the offspring. FASEB J. 27, 3786-3796 (2013).
  73. Wang, K. C., et al. Low birth weight activates the renin-angiotensin system, but limits cardiac angiogenesis in early postnatal life. Physiol rep. 3, (2015).
  74. Zhang, S., et al. Periconceptional undernutrition in normal and overweight ewes leads to increased adrenal growth and epigenetic changes in adrenal IGF2/H19 gene in offspring. FASEB J. 24, 2772-2782 (2010).

Play Video

Citer Cet Article
Burns, P., Liu, H. L., Kuthiala, S., Fecteau, G., Desrochers, A., Durosier, L. D., Cao, M., Frasch, M. G. Instrumentation of Near-term Fetal Sheep for Multivariate Chronic Non-anesthetized Recordings. J. Vis. Exp. (104), e52581, doi:10.3791/52581 (2015).

View Video