This bioassay employs a model predatory fish to assess the presence of feeding-deterrent metabolites from organic extracts of the tissues of marine organisms at natural concentrations using a nutritionally comparable food matrix.
Marine chemical ecology is a young discipline, having emerged from the collaboration of natural products chemists and marine ecologists in the 1980s with the goal of examining the ecological functions of secondary metabolites from the tissues of marine organisms. The result has been a progression of protocols that have increasingly refined the ecological relevance of the experimental approach. Here we present the most up-to-date version of a fish-feeding laboratory bioassay that enables investigators to assess the antipredatory activity of secondary metabolites from the tissues of marine organisms. Organic metabolites of all polarities are exhaustively extracted from the tissue of the target organism and reconstituted at natural concentrations in a nutritionally appropriate food matrix. Experimental food pellets are presented to a generalist predator in laboratory feeding assays to assess the antipredatory activity of the extract. The procedure described herein uses the bluehead, Thalassoma bifasciatum, to test the palatability of Caribbean marine invertebrates; however, the design may be readily adapted to other systems. Results obtained using this laboratory assay are an important prelude to field experiments that rely on the feeding responses of a full complement of potential predators. Additionally, this bioassay can be used to direct the isolation of feeding-deterrent metabolites through bioassay-guided fractionation. This feeding bioassay has advanced our understanding of the factors that control the distribution and abundance of marine invertebrates on Caribbean coral reefs and may inform investigations in diverse fields of inquiry, including pharmacology, biotechnology, and evolutionary ecology.
Chemical ecology developed through the collaboration of chemists and ecologists. While the subdiscipline of terrestrial chemical ecology has been around for some time, that of marine chemical ecology is only a few decades old but has provided important insights into the evolutionary ecology and community structure of marine organisms1-8. Taking advantage of the emergent technologies of SCUBA diving and NMR spectroscopy, organic chemists rapidly generated a great number of publications describing novel metabolites from benthic marine invertebrates and algae in the 1970s and 1980s9. Assuming that secondary metabolites must serve some purpose, many of these publications ascribed ecologically important properties to new compounds without empirical evidence. At about the same time, ecologists were also taking advantage of the advent of SCUBA diving and describing the distributions and abundances of benthic animals and plants previously known from relatively ineffective sampling methods such as dredging. The assumption of these researchers was that anything sessile and soft-bodied must be chemically defended to avoid consumption by predators10. In an effort to introduce empiricism to what was otherwise descriptive work on species abundances, some ecologists began extrapolating chemical defenses from toxicity assays11. Most toxicity assays involved the exposure of whole fish or other organisms to aqueous suspensions of crude organic extracts of invertebrate tissues, with subsequent determination of the dry mass concentrations of extracts responsible for killing half the assay organisms. However, toxicity assays do not emulate the manner in which potential predators perceive prey under natural conditions, and subsequent studies have found no relationship between toxicity and palatability12-13. It is surprising that publications in prestigious journals used techniques having little or no ecological relevance14-15 and that these studies are still widely cited today. It is even more alarming to note that studies based on toxicity data continue to be published16-18. The bioassay method described herein was developed in the late 1980s to provide an ecologically relevant approach for marine chemical ecologists to assess antipredatory chemical defenses. The method requires a model predator to sample a crude organic extract from the target organism at a natural concentration in a nutritionally comparable food matrix, providing palatability data that are more ecologically meaningful than toxicity data.
The general approach to assessing the antipredatory activity of the tissues of marine organisms includes four important criteria: (1) an appropriate generalist predator must be used in feeding assays, (2) organic metabolites of all polarities must be exhaustively extracted from the tissue of the target organism, (3) the metabolites must be mixed into a nutritionally appropriate experimental food at the same volumetric concentration as found in the organism from which they were extracted, and (4) the experimental design and statistical approach must provide a meaningful metric to indicate relative distastefulness.
The procedure outlined below is designed specifically to assess antipredatory chemical defenses in Caribbean marine invertebrates. We employ the bluehead wrasse, Thalassoma bifasciatum, as a model predatory fish because this species is common on Caribbean coral reefs and is known to sample a wide assortment of benthic invertebrates19. Tissue from the target organism is first extracted, then combined with a food mixture, and finally offered to groups of T. bifasciatum to observe whether they reject the extract-treated foods. Assay data using this method have provided important insights into the defensive chemistry of marine organisms12,20-21, life history trade-offs22-24, and community ecology25-26.
NOTE: Step 3 of this protocol involves vertebrate animal subjects. The procedure has been designed so that animals receive the most humane treatment possible and has been approved by the Institutional Animal Care and Use Committee (IACUC) at the University of North Carolina Wilmington.
1) Tissue Extraction
2) Food Preparation
3) Palatability Bioassays
4) Evaluating Significance
Here we report results of this bioassay for six species of common Caribbean sponges (Figure 2). These data were initially published in 1995 by Pawlik et al.12 and demonstrate the power of this approach to survey differences in chemical defense strategies among co-occurring taxa. Results were reported as a mean number of food pellets eaten + standard error (SE) for each species. Almost no pellets were eaten in assays with crude organic extracts from Agelas clathrodes, Amphimedon compressa, and Aplysina cauliformis. In contrast, pellets made with extracts from Callyspongia vaginalis, Geodia gibberosa, and Mycale laevis were readily consumed in the assay12. Fewer than six pellets were eaten for the first three species, so they were considered significantly deterrent. In contrast, the second three species were not significantly different from the controls, and were considered palatable.
Figure 1: Schematic of the assay procedure. At all stages, the rejection of a control pellet indicates that this set of assay fish are uncooperative or satiated and cannot be used further. The protocol begins by offering each set of fish a control pellet followed by a treated pellet. Next, if the treated pellet is accepted the sample is scored as accepted. If the treated pellet is rejected but the subsequent control pellet is accepted, the sample is scored as rejected.
Figure 2: Consumption by Thalassoma bifasciatum of food pellets (mean + SE) containing crude organic extracts of sponges at natural concentrations, first reported in 1995 by Pawlik et al.12 Fish consumed all 10 control pellets in all cases. After each species name, the number of replicate samples is specified (each replicate from the separate extraction of a geographically distinct sample of sponge tissue). For any individual assay, extracts were considered deterrent if the number of pellets eaten was less than or equal to 6 (p = 0.057, modified Fisher’s exact test), as indicated by the dotted line on the graph.
The procedure described herein provides a relatively simple, ecologically relevant laboratory protocol for assessing antipredatory chemical defenses in marine organisms. Here we review the important criteria that are satisfied by this set of methods:
(1) Appropriate predator. This feeding assay employs the bluehead wrasse, Thalassoma bifasciatum, one of the most abundant fishes on coral reefs throughout the Caribbean. The bluehead is a generalist carnivore known to sample a wide assortment of benthic invertebrates19. Generalist predators are the best choice for these initial assays because the majority of predatory fish on reefs are generalists, and it would be expected that antipredatory defenses would be broadly directed against them, as opposed to specialist predators that may have evolved mechanisms to circumvent defenses. Laboratory surveys of chemical defenses using a single potential predator are often followed by more time-consuming and complicated field experiments that rely on the responses of a full complement of potential predators under field conditions28-33.
(2) Extraction procedure. The first tissue extraction step, which uses a solvent mixture of equal parts dichloromethane (DCM) and methanol (MeOH), rapidly permeates tissue, solubilizing membranes and dehydrating cellular material. The tissue is dehydrated after this step, so the subsequent steps extract remaining metabolites of all polarities in MeOH. Repeating the extraction in MeOH until the tissue is fully extracted constitutes an exhaustive extraction procedure. Minor variations on this extraction scheme are acceptable, such as substitution of one extraction solvent for another of the same polarity, but tissue extraction may be incomplete if an inappropriate solvent is used. Potential pitfalls of improper tissue extraction procedures are discussed in detail elsewhere8.
(3) Preparation of experimental food. The artificial food matrix must simulate the tissue of the target organism in both the nutritional quality and concentration of secondary metabolites. It is likely that the same sensory processes that predators use to reject feeding-deterrent metabolites are also involved in the perception of the nutritional quality of foods. Foods with low nutritional quality may be rejected at much lower levels of chemical defense, and conversely, secondary metabolites may only be deterrent at higher-than-natural concentrations if those metabolites are presented in an artificial food that is more nutritious than the tissue from which it was derived. Powdered, freeze-dried squid mantle is a useful nutritional substitute because it is readily available, easy to measure, and its nutritional characteristics have already been determined34.
The second consideration in preparing the experimental food concerns the determination of the concentration of the extract, which must be done on the basis of volume, not mass. Predators eat wet tissue, and the tissues of marine organisms vary widely in water content. From the perspective of a predator, a bite of a jellyfish or sea anemone would contain substantially more water per unit dry mass than the same sized bite of a squid or sea slug. For highly hydrated tissues, the concentration of metabolite per unit dry mass would be much higher than per unit volume, but volume (bites) is the measure that is ecologically relevant. Furthermore, tissues of marine organisms may have very different densities because of mineral skeletal elements. Determination of metabolite concentration by volume solves both problems and is the most relevant measure from the standpoint of consumption of tissue by a potential predator. This topic, including examples from the literature, is discussed in detail elsewhere8.
(4) Experimental design and statistical approach. Appropriate experimental design and statistical analyses of data are as important for behavioral assays as for any other scientific research that involves determining the significance of differences in experimental outcomes. The analysis described herein is simple: differences are determined with a modified contingency table. The method requires that all control food offerings be consumed because the investigator would not be using experimental predators that were not feeding on control foods8. Although the use of Fisher’s exact test has been modified from its initial use by Pawlik et al.12, the threshold value of 6 treated pellets eaten remains unchanged. Over the years, other statistical tests have been suggested as substitutes, but discarded after consultation with collaborator James E. Blum (UNCW Dept. of Mathematics and Statistics). For example, McNemar’s test has been suggested, but is inappropriate, both because it lacks a matched set of data, and because one row of the contingency table is fixed at 10 control pellets eaten.
Despite our experience that this assay method provides remarkably clear results, it nevertheless relies on a behavioral response. If fish are starved for a period of time before the assay, they may eat more treated pellets than they would if fish were well-fed, particularly if a defensive metabolite is present in the treated food pellets at a near-threshold concentration of activity. For these reasons, results of feeding assays should not be over-interpreted. For example, a difference between two tissue samples of 1/10 vs 9/10 pellets eaten indicates the first sample is deterrent and the second is not, but a difference of 3/10 vs 5/10 pellets eaten may be due to behavioral variation between assays, and the first sample is not necessarily more deterrent than the second.
A key application of this bioassay is its use in bioassay-guided fractionation, whereby successive partitions of the crude extract are tested on fish to isolate the chemical compounds responsible for the feeding-deterrent activity29,32-33,35-38. Once the presence of a chemical defense has been ascertained, the crude organic extract is chromatographically fractionated into smaller subsets of compounds that make up the mixture, and these subsets are fed to fish in the same feeding assay. Again, this should be done on a volumetric basis, using “ml equivalents” of tissue extract rather than mass equivalents. As the separation proceeds, fractions are best assayed as a serial dilution relative to the natural volumetric concentration: 4×, 2×, and 1×. This span of concentrations takes into account the likely reduction in deterrent activity that comes from splitting the active metabolites over two or more chromatographic fractions or from loss of active metabolites through decomposition, reaction, or attachment to chromatographic media. Once the active metabolites have been isolated by bioassay-guided fractionation, the investigator may identify them using standard spectroscopic techniques and should also do the same for inactive fractions that may have secondary metabolites. It is equally important to know which secondary metabolites are active in ecologically relevant experiments as to know which metabolites are not8.
Elements of this procedure may also be used to design new experimental techniques. For example, this bioassay was adapted for invertebrate predators (e.g. crabs39 and seastars40), for other geographic regions41, and even to address other research questions (e.g. structural defenses31,34,42 and aposematism27). The four criteria should serve as a guide to future adaptations of this method. In summary, this bioassay procedure provides a more ecologically relevant method for assessing the antipredatory chemical defenses from tissues of marine organisms. Studies using this procedure have advanced our understanding of the factors that control the distribution and abundance of marine invertebrates on Caribbean coral reefs (e.g. most recently, Loh and Pawlik26) and may inform investigations in diverse fields of inquiry, including pharmacology, biotechnology, and evolutionary ecology.
The authors have nothing to disclose.
We thank James Maeda and Aaron Cooke for assistance with the filming and editing of this video. Funding was provided by the National Science Foundation (OCE-0550468, 1029515).
Dichloromethane | Fisher Scientific | D37-20 | |
Methanol | Fisher Scientific | A41220 | |
Anhydrous Calcium Chloride | Fisher Scientific | C614-500 | |
Cryocool Heat Transfer Fluid | Fisher Scientific | 20-548-146 | For vacuum concentrator |
Alginic Acid Sodium Salt High Viscosity | MP Biomedicals | 154723 | |
Squid mantle rings | N/A | N/A | Can be purchased at grocery store |
Denatonium benzoate | Aldrich | D5765 | |
50 ml graduated centrifuge tube | Fisher Scientific | 14-432-22 | |
20 ml scintillation vial | Fisher Scientific | 03-337-7 | |
Disposable Pasteur pipets | Fisher Scientific | 13-678-20D | |
Rubber bulbs for Pasteur pipets | Fisher Scientific | 03-448-24 | |
Red bulbs for pellet delivery | Fisher Scientific | 03-448-27 | |
250 ml round-bottom flask | Fisher Scientific | 10-067E | |
Scintillation vial adapter for rotavap | Fisher Scientific | K747130-1324 | |
Weightboats | Fisher Scientific | 02-202B | |
Microspatula | Fisher Scientific | 21-401-10 | |
5 ml graduated syringe | Fisher Scientific | 14-817-53 | |
10 ml graduated syringe | Fisher Scientific | 14-817-54 | |
Razor blade | Fisher Scientific | S17302 |