Summary

基于发育毒性测定化学品安全筛选和系统生物学数据生成人类多能干细胞

Published: June 17, 2015
doi:

Summary

该协议描述了基于人胚胎干细胞和转录研究2 在体外发育毒性试验系统(UKK和UKN1)。测试系统预测人类发育毒性危险,并可能有助于减少动物研究中,成本和所需的化学安全测试的时间。

Abstract

高效的协议来区分人多能干细胞,以组合各种组织与组学技术开辟了新的视野为潜在药物的体外毒性测试。为了提供这种试验坚实的科学基础,这将是非常重要的获得发展的时间进程和底层的监管机制,系统生物学方法的定量信息。两个实验都因此被调整为在这里这些要求。在UKK测试系统中,人胚胎干细胞(hESC细胞)(或其它多能细胞)都留给自发分化为胚状体14天,以允许产生所有三个胚层的细胞。该系统概括的人类早期胚胎发育的关键步骤,并且它可以预测人特异性早期胚胎毒性/致畸性,如果细胞分化过程中暴露于化学品。所述UKN1测试系统是基于人类胚胎干细胞分化为一个populat神经外胚层祖离子(NEP)细胞6天。该系统概括早期神经发育,并预测早期发育神经毒性和化学品引发的表观遗传变化。两个系统,在与转录微阵列研究结合,适合于识别的毒性的生物标志物。此外,它们也可以组合使用以产生用于系统生物学分析的输入数据。这些测试系统具有比传统的毒理学研究需要大量的动物的优点。该测试系统可能有助于减少药物开发和化学安全性评价的费用。他们的组合揭示尤其是对可能影响具体化合物的神​​经发育光。

Introduction

人类胚胎干细胞(hESC细胞)的分化成各种细胞的能力打开了体外毒性试验1中 ,疾病建模和再生医学2的新时代。干细胞被赋予的能力,自我复制,以保持其多能状态,并分化成特定细胞3,4。的人类胚胎干细胞的特性(容量来区分所有主要的细胞类型),也发现在其它人多能干细胞,如人类诱导多能干细胞(hiPSC)或通过核移植5产生的细胞。例如,许多不同的hESC细胞系已分化为神经元6,肾细胞7,神经嵴细胞8,心肌9-12,或肝细胞样细胞13,14。此外,人类胚胎干细胞可自发地分化成胚状体(EB)19,20所有三种胚层15-18的细胞。 Ë阿尔利胚胎发育是通过与已捕获在mRNA水平通过使用微阵列技术15转录的不同胚层的多种基因的差异表达调控。这些努力使建立基于人类胚胎干细胞/ hiPSC和转录组分析(综述见21,22)器官特异性毒性模型。这些车型有优势的传统使用实验动物的毒理学研究,如使用实验动物并不总是预测人类安全的临床前研究。在患者中遇到的药物诱导的毒性往往与人类和实验动物之间是不同的代谢或信号传导过程。的物种差异防止了可靠的早期检测发育毒性在人类,例如药物如沙利度胺23,24和己烯雌酚25,26从市场上撤回由于致畸。塔利domide并没有表现出在大鼠或小鼠任何发育毒性。环境化学品如甲基汞27导致相对于神经系统中的各种物种产前发育毒性,但人的表现已经很难在动物模型。为了解决种属特异性问题的问题,科学家们根据不同的项目工作的基础上的干细胞一样重新保护,ESNATS,侦探所从事的不同型号的发展胚胎毒性,神经毒性,心脏毒性,肝毒性和肾毒性涉嫌使用对人体有毒物质影响人类。根据欧洲联盟项目的胚胎干细胞为基础的新型替代测试策略(ESNATS)“五个测试系统已经建立。一个测试系统的所谓UKK(UniversitätsķlinikumķOLN)测试系统部分捕捉人类早期胚胎发育。在这个System人类胚胎H9细胞分化中15和胚层特定的签名已被抓获转录使用Affymetrix芯片平台简介三个胚层(外胚层,内胚层和中胚层)。像沙利度胺28,丙戊酸,甲基汞16,17,或阿糖胞苷15各个发育毒物在该系统已经过测试,并且具体毒物基因签名已被获得。在第二测试系统,即所谓的UKN1(U。高校ķonsta N个Z的)测试系统1中,H9细胞分化到神经外胚层祖细胞(NEP)6天。这是通过高表达的神经基因标记如PAX6OTX2证实在分化6天,NEP细胞已经暴露于发育神经毒物如丙戊酸钠,甲基汞。毒物特异性解除管制的转录概况已obtai通过使用Affymetrix芯片平台定义16,29以及。

对于21 世纪的毒理学的新远景设想,测试系统不仅产生的表型的描述,如组织病理学体内 ,或转录变化在长期毒物孵化结束。它,而表明试验提供机械信息3,而该信息可以被映射到所谓的不利后果的途径(AOP),提供了一个科学原理为危险影响30。为了提供这种信息,应用的测试系统必须高度控制质量31,作为例如通过稳健标准操作程序记载。此外,依赖于时间的变化需要被映射为高的分辨率。这就要求测试系统同步变化32。这里所描述的UKN1和UKK测试系统进行了优化这些需求。

Protocol

使用人胚胎干细胞系(人类胚胎干细胞)H9进行以下协议。此细胞系常规地在有丝分裂失活的小鼠胚胎成纤维细胞(MEFs)在人类胚胎干细胞的培养基补充有bFGF和然后培养干细胞培养基上6厘米涂有基底膜基质如基质胶,培养皿除掉的MEF的培养。从> 80%汇合板的H9细胞用于进一步的通道。 H9细胞对基底膜基质平板上培养被用于EB的形成。在以下协议中提及的所有程序使用标准?…

Representative Results

在UKK测试系统甲基汞暴露与H9的EB进行的细胞毒性测定,得到的IC 10值(10%减少活力的)甲基汞的细胞毒性( 图1)。我们还进行了微阵列基础(Affymetrix公司的平台)的生物标志物研究。的H9的EB已暴露于甲基汞(0.25和1μM)14天。在第14天,将样品已收集使用Trizol和分离RNA。使用人类基因组U133加2.0阵列芯片进行转录谱。的数据进行了分析以将Partek基因组套?…

Discussion

传统方法毒理试验涉及广泛的动物研究中从而使测试昂贵和费时。此外,由于种间差异的临床前动物安全性研究并不总是有效的预测与人类有关的潜在药物毒性作用。虽然非人类灵长类动物是最可预测的,还是强烈的伦理和socioeconomical需求正在迅速被现代社会提高发展中国家在体外试验敏感和强大 有关人类的安全系统。

人类胚胎干细胞的独特能力分化成所有的?…

Divulgations

The authors have nothing to disclose.

Acknowledgements

We thank M. Kapitza, Margit Henry, Tamara Rotshteyn, Susan Rohani and Cornelia Böttinger for excellent technical support. This work was supported by grants from the German Research Foundation (RTG 1331) and the German Ministry for Research (BMBF).

Materials

DMEM/F-12 Life Technologies 11320082 Dulbecco's Modified Eagle Medium:Nutrient Mixture F-12
KOSR Life Technologies 10828028 Knockout Serum Replacement
GlutaMAX Life Technologies 35050061 GlutaMAX supplement
NEAA Life Technologies 11140050 MEM Nonessential Amino Acids Solution
DPBS Life Technologies 14190-0144 Dulbecco's Phosphate-Buffered Saline, without calcium, without magnesium
mTeSR medium Stemcell Technologies 5850
Pluronic F-127 Sigma P2443-250G
V bottom plate VWR 734-0483 Plate,Microwell,V BTTM,96 Well,Sterile 1 * 50 ST
Vbottom plate lid VWR 634-0011 Lid, Microtitre plates, Cond. Ring 1 * 50 ST
Pen/Strep Life Technologies 15140-122 Penicillin- Streptomycin, Liquid
Distilled Water Life Technologies 15230-089. Sterile Distilled Water
Human FGF-2 (bFGF) Millipore GF003AF-100UG Fibroblast Growth Factor basic, human recombinant, animal-free
Filter 0.22 μm Millipore SCGPU02RE Stericup-GP, 0.22 μm, polyethersulfone, 250 ml, radio- sterilized
StemPro EZPassageTM Disposablte Invitrogen 23181010
BD MatrigelTM, hESC qualified Matrix Stemcell Technologies 354277 5 ml vial
DMSO Sigma D-2650
RNAlater Stabilization Solution Life Technologies AM7020 It stabilizes and protect the RNA integrity in unfrozen samples.
70 μm Cell Strainer Becton Dickinson 352350 Cell strainer with 70 μm Nylon mesh
35 μm Lid cell strainer, 5 ml tube Becton Dickinson 352235 5 ml polystyrene round bottom test tube, with a cell strainer cap (35 μm)
50 ml sterile Polypropylene tube Greiner Bio-One 227261 50 ml Polypropylene tube with conical bottom, Sterile
T75 flask Greiner Bio-One 658175 CELLSTAR Filter Cap Cell Culture 75 cm2 Flasks
TRIzol Life Technologies 10296010
96 well optical bottom plates Thermo Scientific 165305
CellTiter-Blue Promega G8081
Accutase PAA L11-007
Apotransferin Sigma-Aldrich T-2036
Dispase Worthington Biochemicals LS002104
Dorsomorphin Tocris Bioscience 3093
EDTA Roth 8043.2
FBS PAA A15-101
FGF-2 R&D Systems 233-FB
Gelatine Sigma-Aldrich G1890-100G
Glucose Sigma-Aldrich G7021-100G
GlutaMAX Gibco Invitrogen 35050-038
HEPES Gibco Invitrogen 15630-056
Insulin Sigma-Aldrich I-6634
Knockout DMEM Gibco Invitrogen 10829-018
Matrigel BD Biosciences 354234
Noggin R&D Systems 719-NG
PBS Biochrom AG L1825
Progesteron Sigma-Aldrich P7556
Putrescine Sigma-Aldrich P-5780
ROCK inhibitor Y-27632 Tocris Biosciences 1254
SB431542 Tocris Biosciences 1614
SDS Bio-Rad 161-0416
Selenium Sigma-Aldrich S-5261
β-Mercaptoethanol Gibco Invitrogen 31350-010
List of Kits
RNeasy Mini Kit (250) QIAGEN 74106
GeneChip Hybridization, Wash, and Stain Kit Affymetrix 900721, 22, 23 This kit provides all reagents required for hybridization wash and staining of microarrays.
Rnase-Free DNase Set QIAGEN 79254
List of equipment.
Inverted microscope Olympus IX71
Genechip Hybridisation Oven – 645 Affymetrix
Genechip Fluidics Station-450 Affymetrix
Affymetrix Gene-Chip Scanner-3000-7 G Affymetrix
Spectramax M5 Molecular Devices
List of softwares
Prism 4
Affymetrix GCOS
Partek Genomic Suite 6.25
Online tools for Functional annotation
DAVID
Onto-tools Intelligent Systems and Bioinformatics Laboratory

References

  1. Liu, W. W., Deng, Y. G., Liu, Y., Gong, W. R., Deng, W. B. Stem Cell Models for Drug Discovery and Toxicology Studies. Journal of Biochemical and Molecular Toxicology. 27 (1), 17-27 (2013).
  2. Zuba-Surma, E. K., Jozkowicz, A., Dulak, J. Stem Cells in Pharmaceutical Biotechnology. Current Pharmaceutical Biotechnology. 12 (11), 1760-1773 (2011).
  3. Leist, M., Hartung, T., Nicotera, P. The dawning of a new age of toxicology. ALTEX. 25 (2), 103-114 (2008).
  4. Kuegler, P. B., et al. Markers of murine embryonic and neural stem cells, neurons and astrocytes: reference points for developmental neurotoxicity testing. ALTEX. 27 (1), 17-42 (2010).
  5. Yamada, M., et al. Human oocytes reprogram adult somatic nuclei of a type 1 diabetic to diploid pluripotent stem cells. Nature. , (2014).
  6. Chambers, S. M., et al. Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nature Biotechnology. 27 (3), 275-280 (2009).
  7. Takasato, M., et al. Directing human embryonic stem cell differentiation towards a renal lineage generates a self-organizing kidney. Nature cell biology. 16 (1), 118-126 (2014).
  8. Zimmer, B., et al. Evaluation of Developmental Toxicants and Signaling Pathways in a Functional Test Based on the Migration of Human Neural Crest Cells. Environmental Health Perspectives. 120 (8), 1116-1122 (2012).
  9. Bosman, A., et al. Molecular and Functional Evidence of HCN4 and Caveolin-3 Interaction During Cardiomyocyte Differentiation from Human Embryonic Stem Cells. Stem Cells and Development. 22 (11), 1717-1727 (2013).
  10. Sartiani, L., et al. Developmental changes in cardiomyocytes differentiated from human embryonic stem cells: A molecular and electrophysiological approach. Stem Cells. 25 (5), 1136-1144 (2007).
  11. Xu, X. Q., et al. Chemically defined medium supporting cardiomyocyte differentiation of human embryonic stem cells. Differentiation. 76 (9), 958-970 (2008).
  12. Pal, R., Mamidi, M. K., Das, A. K., Bhonde, R. Comparative analysis of cardiomyocyte differentiation from human embryonic stem cells under 3-D and 2-D culture conditions. Journal of Bioscience and Bioengineering. 115 (2), 200-206 (2013).
  13. Subramanian, K., et al. Spheroid Culture for Enhanced Differentiation of Human Embryonic Stem Cells to Hepatocyte-Like Cells. Stem Cells and Development. 23 (2), 124-131 (2014).
  14. Sivertsson, L., Synnergren, J., Jensen, J., Bjorquist, P., Ingelman-Sundberg, M. Hepatic Differentiation and Maturation of Human Embryonic Stem Cells Cultured in a Perfused Three-Dimensional Bioreactor. Stem Cells and Development. 22 (4), 581-594 (2013).
  15. Jagtap, S., et al. Cytosine arabinoside induces ectoderm and inhibits mesoderm expression in human embryonic stem cells during multilineage differentiation. British Journal of Pharmacology. 162 (8), 1743-1756 (2011).
  16. Krug, A. K., et al. Human embryonic stem cell-derived test systems for developmental neurotoxicity: a transcriptomics approach. Archives of Toxicology. 87 (1), 123-143 (2013).
  17. Leist, M., et al. Test systems of developmental toxicity: state-of-the art and future perspectives. Archives of Toxicology. 87 (12), 2037-2042 (2013).
  18. Itskovitz-Eldor, J., et al. Differentiation of human embryonic stem cells into embryoid bodies compromising the three embryonic germ layers. Molecular medicine. 6 (2), 88-95 (2000).
  19. Khoo, M. L. M., et al. Growth and differentiation of embryoid bodies derived from human embryonic stem cells: Effect of glucose and basic fibroblast growth factor. Biology of Reproduction. 73 (6), 1147-1156 (2005).
  20. Son, M. Y., Kim, H. J., Kim, M. J., Cho, S. Physical Passaging of Embryoid Bodies Generated from Human Pluripotent Stem Cells. Plos One. 6 (5), (2011).
  21. Winkler, J., Sotiriadou, I., Chen, S., Hescheler, J., Sachinidis, A. The potential of embryonic stem cells combined with -omics technologies as model systems for toxicology. Current medicinal chemistry. 16 (36), 4814-4827 (2009).
  22. Gunaseeli, I., Doss, M. X., Antzelevitch, C., Hescheler, J., Sachinidis, A. Induced pluripotent stem cells as a model for accelerated patient- and disease-specific drug discovery. Current medicinal chemistry. 17 (8), 759-766 (2010).
  23. Miller, M. T., Stromland, K. Teratogen update: Thalidomide: A review, with a focus on ocular findings and new potential uses. Teratology. 60 (5), 306-321 (1999).
  24. Newman, C. G. H. Teratogen Update – Clinical Aspects of Thalidomide Embryopathy – A Continuing Preoccupation. Teratology. 32 (1), 133-144 (1985).
  25. Stern, L. In vivo assessment of the teratogenic potential of drugs in humans. Obstetrics and gynecology. 58 (5 Suppl), 3S-8S (1981).
  26. Lynch, H. T., Reich, J. W. Diethylstilbestrol, Genetics, Teratogenesis, and Tumor Spectrum in Humans. Medical Hypotheses. 16 (3), 315-332 (1985).
  27. Satoh, H. Behavioral teratology of mercury and its compounds. Tohoku Journal of Experimental Medicine. 201 (1), 1-9 (2003).
  28. Meganathan, K., et al. Identification of Thalidomide-Specific Transcriptomics and Proteomics Signatures during Differentiation of Human Embryonic Stem Cells. Plos One. 7 (8), (2012).
  29. Balmer, N. V., et al. Epigenetic changes and disturbed neural development in a human embryonic stem cell-based model relating to the fetal valproate syndrome. Human Molecular Genetics. 21 (18), 4104-4114 (2012).
  30. Smirnova, L., Hogberg, H. T., Leist, M., Hartung, T. Developmental neurotoxicity – Challenges in the 21st Century and In Vitro Opportunities. ALTEX. 31 (2), 129-156 (2014).
  31. Leist, M., Efremova, L., Karreman, C. Food for thought … considerations and guidelines for basic test method descriptions in toxicology. ALTEX. 27 (4), 309-317 (2010).
  32. Zimmer, B., et al. Coordinated waves of gene expression during neuronal differentiation of embryonic stem cells as basis for novel approaches to developmental neurotoxicity testing. Cell Death and Differentiation. 18 (3), 383-395 (2011).
  33. Kraljevic, S., Stambrook, P. J., Pavelic, K. Accelerating drug discovery. EMBO Reports. 5 (9), 837-842 (2004).
check_url/fr/52333?article_type=t

Play Video

Citer Cet Article
Shinde, V., Klima, S., Sureshkumar, P. S., Meganathan, K., Jagtap, S., Rempel, E., Rahnenführer, J., Hengstler, J. G., Waldmann, T., Hescheler, J., Leist, M., Sachinidis, A. Human Pluripotent Stem Cell Based Developmental Toxicity Assays for Chemical Safety Screening and Systems Biology Data Generation. J. Vis. Exp. (100), e52333, doi:10.3791/52333 (2015).

View Video