The protocols describe two in vitro developmental toxicity test systems (UKK and UKN1) based on human embryonic stem cells and transcriptome studies. The test systems predict human developmental toxicity hazard, and may contribute to reduce animal studies, costs and the time required for chemical safety testing.
Efficient protocols to differentiate human pluripotent stem cells to various tissues in combination with -omics technologies opened up new horizons for in vitro toxicity testing of potential drugs. To provide a solid scientific basis for such assays, it will be important to gain quantitative information on the time course of development and on the underlying regulatory mechanisms by systems biology approaches. Two assays have therefore been tuned here for these requirements. In the UKK test system, human embryonic stem cells (hESC) (or other pluripotent cells) are left to spontaneously differentiate for 14 days in embryoid bodies, to allow generation of cells of all three germ layers. This system recapitulates key steps of early human embryonic development, and it can predict human-specific early embryonic toxicity/teratogenicity, if cells are exposed to chemicals during differentiation. The UKN1 test system is based on hESC differentiating to a population of neuroectodermal progenitor (NEP) cells for 6 days. This system recapitulates early neural development and predicts early developmental neurotoxicity and epigenetic changes triggered by chemicals. Both systems, in combination with transcriptome microarray studies, are suitable for identifying toxicity biomarkers. Moreover, they may be used in combination to generate input data for systems biology analysis. These test systems have advantages over the traditional toxicological studies requiring large amounts of animals. The test systems may contribute to a reduction of the costs for drug development and chemical safety evaluation. Their combination sheds light especially on compounds that may influence neurodevelopment specifically.
The ability of human embryonic stem cells (hESC) to differentiate into various types of cells opened up a new era of in vitro toxicity testing1, disease modelling and regenerative medicine2. The stem cells are endowed with the capacity to self-replicate, to keep their pluripotent state, and to differentiate into specialized cells3,4. The properties of hESC (capacity to differentiate to all major cell types) are also found in other human pluripotent stem cells, such as human induced pluripotent stem cells (hiPSC) or cells generated by nuclear transfer5. For instance, many different hESC lines have been differentiated into neurons6, renal cells7, neural crest cells8, cardiomyocytes9-12, or hepatocytes like cells13,14. Moreover, hESC can spontaneously differentiate into cells of all three germ layers15-18 in embryoid bodies (EBs)19,20. Early embryonic development is regulated by differential expression of various genes related to the different germ layers which has been captured at mRNA level by transcriptomics using microarray technology15. These efforts resulted in the establishment of organ specific toxicological models based on hESC/hiPSC and transcriptomics analysis (for review see 21,22). These models have advantages over the traditional use of laboratory animals for toxicological studies, as preclinical studies using laboratory animals are not always predictive of human safety. The drug induced toxicities encountered in patients are often related to metabolic or signaling processes that differ between humans and experimental animals. The species difference has prevented the reliable early detection of developmental toxicity in humans, and for instance drugs such as thalidomide23,24 and diethylstilbestrol25,26 were withdrawn from the market due to teratogenicity. Thalidomide has not shown any developmental toxicity in rats or mice. Environmental chemicals such as methyl mercury27 resulted in prenatal developmental toxicity with respect to the nervous system in various species, but human manifestations have been hard to model in animals. To address the problem of species specificity issues, scientists working under different projects based on stem cells like ReProTect, ESNATS, DETECTIVE etc. are engaged in the development of different models for embryonic toxicity, neurotoxicity, cardiotoxicity, hepatotoxicity and nephrotoxicity using human toxicants suspected to affect humans. Under the European consortium project 'Embryonic Stem cell-based Novel Alternative Testing Strategies (ESNATS)' five test systems have been established. One test system the so called UKK (Universitätsklinikum Köln) test system partially captures early human embryonic development. In this system human embryonic H9 cells are differentiated in to three germ layers (ectoderm, endoderm and mesoderm)15 and germ layer specific signatures have been captured by transcriptomics profile using the Affymetrix microarray platform. Various developmental toxicants like thalidomide28, valproic acid, methyl mercury16,17, or cytosine arabinoside15 have been tested in this system, and toxicant specific gene signatures have been obtained. In a second test system, the so called the UKN1 (University of Konstanz) test system 1, H9 cells are differentiated to neuroectodermal progenitor cells (NEP) for 6 days. This is evidenced by high expression of neural gene markers such as PAX6 and OTX2. During differentiation for 6 days, NEP cells have been exposed to developmental neuro-toxicants such as VPA, methyl mercury. Toxicant-specific de-regulated transcriptomics profiles have been obtained as well by using the Affymetrix microarray platform16,29.
The new vision for toxicology of the 21st century envisages that test systems do not only yield phenotypic descriptions like histopathology in vivo, or transcriptome changes at the end of long-term toxicant incubations. It rather suggests that assays provide mechanistic information3, and that this information can be mapped to so-called adverse outcome pathways (AOP) that provide a scientific rationale for hazardous effects30. To provide such information, the test systems applied have to be highly quality controlled31, as for instance documented by robust standard operation procedures. Moreover, time-dependent changes need to be mapped with high resolution. This requires test systems with synchronized changes32. The UKN1 and UKK test systems described here have been optimized for these requirements.
The following protocol was performed using human Embryonic Stem Cell line (hESC) H9. This cell line was routinely cultured on mitotically inactivated mouse embryonic fibroblasts (MEFs) in hESC culture media supplemented with bFGF and then cultured in stem cell media on 6 cm Petri plates coated with basement membrane matrix such as matrigel, to get rid of MEFs. The H9 cells from >80% confluent plates were used for further passage. H9 cells cultured on basement membrane matrix plates were used for EBs formation. All procedures mentioned in the following protocol have been performed using standard methods for aseptic and good cell culture practices.
Part 1. UKK test System
1. Human Embryonic Stem Cell Culturing
2. Embryoid Bodies (EBs) Formation
Perform all procedure mentioned below as per aseptic precautions and in the biosafety cabinet.
3. Cytotoxicity Assay for IC10 Determination
4. Biomarker Study Based on Microarrays
5. RNA Isolation and Integrity Testing
6. Microarray Studies
Part 2. UKN 1 Test System
1. Maintenance of hESC
2. Differentiation of hESC towards Neuroectodermal Progenitor Cells (NEP)
3. Chromatin Immunoprecipitation (ChIP) of hESC and NEP
Methyl mercury exposure in UKK test system
The cytotoxicity assay was performed with H9 EBs to obtain an IC10 value (reduction of viability by 10%) for the cytotoxicity of methyl mercury (Figure 1). We also performed a microarray based (affymetrix platform) biomarker study. The H9 EBs have been exposed to methyl mercury (0.25 and 1 µM) for 14 days. On day 14, samples have been collected using TRIzol and RNA was isolated. Transcriptional profiling was performed using Human Genome U133 plus 2.0 array chips. The data have been analyzed with Partek Genomic SuiteTM 6.6. First data overview was obtained by Principle Component Analysis (Figure 2A), generation of Venn diagrams (Figure 2B) and construction of heat maps (Figure 2C). The principle component analysis represents the overall distribution of gene expression and it clearly visualized segregation of MeHg 1 µM from the vehicle control and MeHg 0.25 µM groups (PC # 25.2) (Figure 2A). A list of differentially-expressed genes (DEG) was obtained after statistical treatment (one-way ANOVA) and filtering of the data using a fold change cut-off of ± 2 and a multiplicity-corrected (Benjamini-Hochberg method) p-value < 0.05 (Table 1). The 1 µM MeHg treatment resulted in 276 DEGs and 0.25 µM in 31 DEGs (Figure 2B). The heat map showed that MeHg 1 µM treatment mainly reduced gene expression (Figure 2C). Information on overrepresented gene ontology terms was obtained by using the DAVID bioinformatics tool. Table 2 represents the significantly overrepresented GO gene categories that contained more than 5 genes. The down-regulated transcription factors related to the nervous system development were identified. SEPP1, DDIT4, AK4, FRZB (brain development), PITX (neural nucleus development) and ERBB3, UGT8, APOB, APOA1 (nervous system development) were down-regulated in a dose dependent manner for methyl mercury treatment (Table 3).
UKN 1 test system
This differentiation protocol uses dual SMAD inhibiton6 to generate a pure population of NEP within six days of differentiation. The resultant cells are characterized by an up-regulation of the neural precursor genes PAX6 and OTX2. The stem cell markers OCT4 and Nanog are down regulated during the differentiation towards NEP (Figure 3A). Due to the highly synchronous and homogenous differentiation, it is also possible to get information on the histone modifications during this early stage of development. We adapted the protocol for chromatin immuno-precipitation (ChIP) using the cells either at the beginning of differentiation or after 6 days of differentiation. A switch of methylation sites on the promoter regions of PAX6 and OTX2 was evident from these studies (Figure 3B). The investigated methylation sites histone 3 lysine 4 trimethylation (H3K4me3) and histone 3 lysine 27 trimethylation (H3K27me3) were highly dynamic during the differentiation. Also on protein level a down regulation of Oct4 could be observed (Figure 4). The up-regulation of Pax6 and the neural stem cell marker Nestin was observed by immunofluorescence microscopy on protein level (Figure 4). The cell population showed a homogeneous and pure differentiation after six days of differentiation. Therefore the cultures can be easily used for analysis of RNA and protein. The system provides also the possibility to test substances and the effect they have on early neural development 16,29.
Figure 1. Cytotoxicity Assay (H9 differentiation) for MeHg. The assay has been performed as per the protocol to define the IC10 value for methyl mercury.
Figure 2. Representative analysis of the differential expressed genes induced by 0.25 and 1 µM MeHg after application of the UKK test system. The hESCs were treated with 0.25 and 1 µM MeHg according to the UKK test system. Analysis of the differential expressed transcripts in 14-day differentiated EBs has been performed using the Partek Genomic SuiteTM 6.6 software. (A) Principal component analysis (3-Dimenional) of the microarray data. (B) Venn diagram obtained from microarray analysis of gene expression. The diagram shows the number of genes modulated by the MeHg treatment (fold change > ± 2, p value < 0.05). (C) Hierarchical clustering of the gene expression data (fold change > ± 2, p value < 0.05). The highly expressed genes in vehicle control group are repressed by 1 µM MeHg treatment. The 1 µM MeHg treatment resulted in 233 transcripts with lower expression and 43 probes with higher expression as compare to vehicle control group. Please click here to view a larger version of this figure.
Figure 3. Gene expression and histone methylation pattern during differentiation from hESC towards NEP. For all experiments, hESC were differentiated to neuroectodermal precursor cells (NEP). (A) Samples were taken at day 6 of differentiation, and transcript levels of marker genes of neural differentiation were determined by RT-qPCR. Data (gene expression relative to hESC) are means ± SEM of 5 experiments. (B) Samples for chromatin immunoprecipitation (ChIP) were prepared at day 6 of differentiation. ChIP was performed with antibodies specific for H3K4me3 or H3K27me3 or control IgG. The enrichment factors of promoter sequences are given as % input for H3K4me3 (grey) and H3K27me3 (black). Data are means ± SEM of 3 independent cell preparations. Please click here to view a larger version of this figure.
Figure 4. Protein expression during differentiation from hESC towards NEP. Cells were fixed and stained for the stem cell marker Oct4 (green) at day 0 of differentiation (DoD0) and for NEP markers Pax6 (red) and Nestin (green) at day 6 of differentiation (DoD6). Scale bar indicates 50 µm. Please click here to view a larger version of this figure.
Table 1. List of differentially expressed genes (> ± 2 fold, p value < 0.05) of MeHg treatment versus vehicle control in 14 day old EBs. Please click here to view this table.
Table 2. List of significantly enriched and selected GO categories (p value < 0.05, > 5 genes) with dysregulated transcripts for MeHg versus vehicle control in 14 day old EBs.
GO Term | Count | P value | Genes |
Regulation of Apoptosis | 18 | 0.0068 | ARHGEF3, TBX3, ERBB3, MITF, BNIP3, CDH1, IGF2, IFI16, HGF, GCH1, AMIGO2, SERPINB9, KRT18, MSX1, ETS1, VEGFA, PERP, IGFBP3 |
Regulation of Cell Proliferation | 17 | 0.0123 | RBP4, LYN, TBX3, ERBB3, MITF, IGF2, KDR, RERG, MSX1, ADM, ETS1, VEGFA, BNC1, ADAMTS1, FABP1, IGFBP3, FIGF |
Vasculature Development | 12 | 0.0001 | PLAT, APOB, HAND1, TBX3, EPAS1, FOXF1, LEPR, VEGFA, COL3A1, LOX, FIGF, KDR |
Skeletal System Development | 12 | 0.0008 | RBP4, MSX1, LGALS3, TBX3, HOXB6, COL3A1, STC1, IGF2, POSTN, FRZB, IGFBP3, AHSG |
Heart Development | 11 | 0.0001 | RBP4, ACTC1, MSX1, HAND1, TBX3, ADM, PKP2, ERBB3, GATA6, COL3A1, ADAMTS1 |
Glucose Metabolic Process | 9 | 0.0003 | PDK1, RBP4, LDHA, PGM5, PYGL, HK2, PFKP, IGF2, PGK1 |
Lung Development | 7 | 0.0008 | RBP4, EPAS1, GATA6, FOXF1, VEGFA, LOX, KDR |
Epithelium Development | 7 | 0.0386 | F11R, FREM2, GATA6, FOXF1, VEGFA, DSP, KDR |
Mesoderm Development | 5 | 0.0088 | HAND1, TBX3, FOXF1, VEGFA, SNAI2 |
Table 3. List of significantly down-regulated transcripts related to the developmental nervous system with MeHg treatment in 14 day old EBs.
Term | Gene Symbol | Fold Change* | |
0.25 μM MeHg vs VC | 1 μM MeHg vs VC | ||
Brain Development | SEPP1 | -2.17 | -4.13 |
DDIT4 | -1.20 | -3.11 | |
AK4 | -1.41 | -3.08 | |
FRZB | -1.29 | -2.19 | |
Neuronal nucleus development | PITX2 | -2.08 | -4.90 |
Nervous system development | ERBB3 | -1.86 | -2.89 |
UGT8 | -1.67 | -2.14 | |
APOB | -3.59 | -5.72 | |
APOA1 | 2.63 | -2.90 | |
VEGFA | -1.28 | -3.06 |
* p value < 0.05
Table 4. Composition of culture media.
Sr. No. | Medium / Buffer Name | Composition | |
Contents | Amount | ||
1 | MEF Medium | DMEM High glucose | |
FCS | 10% | ||
Penicillin | 100 units/ml | ||
Streptomycin | 100 μg/ml | ||
L-Glutamine | 2 mM | ||
2 | H9 Culture Medium | DMEM F12 | |
KOSR | 20% | ||
NEAA | 1% | ||
Glutamax | 1x | ||
β-mercaptoethanol | 0.1 mM | ||
Penicillin | 100 units/ml | ||
Streptomycin | 100 μg/ml | ||
bFGF | 4 ng /ml | ||
3 | RD Medium | H9 culture medium without bFGF | |
4 | Wash Medium | DMEM/F12 | |
Knockout Serum Replacment | 20% | ||
1x GlutaMAX | 1x | ||
MEM non-essential amino acids | |||
HEPES | 15 mM | ||
β-mercaptoethanol | 90 μM | ||
5 | KCM Medium | DMEM | |
FBS | 10% | ||
incubated for 24 hr on MEFs | |||
6 | Knockout Serum Replacement (KSR) |
Knockout DMEM/F12 | |
Knockout serum replacement | 15% | ||
1x GlutaMAX | |||
1x MEM non-essential amino acids | |||
β-mercaptoethanol | 15 μm | ||
Noggin | 35 ng/ml | ||
Dorsomorphin | 600 nM | ||
SB431542 | 10 μM | ||
7 | N2-S | DMEM/F-12 | |
Apotransferin | 100 μg/ml | ||
Glucose | 1.55 mg/ml | ||
Putrescine | 10 mM | ||
Selenium | 500 μM | ||
Progesteron | 20 μM | ||
GlutaMAX | 200 μM | ||
Insulin | 25 μg/ml | ||
8 | L1 Buffer | Tris pH 8 | 50 mM |
EDTA | 2 mM | ||
NP-40 | 0.10% | ||
Glycerol | 10% | ||
9 | L2 Buffer | Tris pH 8 | 50 mM |
EDTA | 10 mM | ||
SDS | 1% | ||
10 | Elution Buffer | NaHCO3 | 100 mM |
SDS | 1% | ||
11 | Wash Buffer | Tris | 20 mM |
EDTA | 2 mM | ||
SDS | 0.10% | ||
NP-40 | 0.50% | ||
NaCl | 150 mM | ||
12 | Final Wash Buffer | Tris | 20 mM |
EDTA | 2 mM | ||
SDS | 0.10% | ||
NP-40 | 0.50% | ||
NaCl | 500 mM | ||
13 | Stem Cell Medium | mTESARTM basal medium | 400 ml |
mTESARTM supplement | 100 ml |
Traditional approaches to toxicological testing involve extensive animal studies thus making testing costly and time-consuming. Moreover, due to the interspecies differences the preclinical animal safety studies are not always valid to predict toxicity effects of potential drugs relevant for humans. Although non-human primates are most predictable, still strong ethical, and socioeconomical demands are rapidly raising by modern societies for developing sensitive and robust in vitro test system relevant to human safety.
The unique ability of hESCs to differentiate into all somatic cell types, therefore recapitulating in vivo human developmental processes in the combination with sensitive toxicogenomics approaches has been proposed as an alternative to the traditional approaches for drug safety testing6,21. Under the 'ESNATS' project the 'UKK' test system has been developed to predict the developmental embryonic toxicity based on transcriptomics profiling. In this system hESC have been differentiated in to the embryoid bodies for 14 days. The time kinetic transcriptomics profile obtained shows high expression of differentiation marker specific to the three germ layers ectoderm, endoderm and mesoderm on day 14 which partially recapitulate early human embryonic development. Based on these results, known teratogenic drugs have been exposed during differentiation for 14 days and differential expressed gene profile have been obtained. Impressively, gene signatures associated with the teratogenic effects of thalidomide observed in humans, could be predicted by this test system28. The representative results for methyl mercury in UKK system show concentration-dependent down regulation of the transcription factors related to the nervous system development. The other developmental neuro-toxicants were also tested in this system and efforts are going on to identify the common toxico-markers across the compounds at mRNA level and validate them at the protein level. The UKK test protocol provided here gives basic guideline for conducting the experiment with human embryonic stem cell H9 to identify the transcriptomic signature for developmental toxicant.
The optimized standard operation procedure (SOP) for differentiation of pluripotent stem cells according to the UKN1 protocol allows a robust and synchronized differentiation of hESC to NEP. Already after six days of differentiation, a homogeneous cell population with high PAX6 expression levels is generated. The cells grow in adherent cultures, which allow analysis by immunostaining. Immunocytochemical analysis with high resolution and by confocal microscopy requires that cells are grown on thin glass surfaces. This is possible for these cultures if the glass is coated optimally, but it needs to be mentioned that the cells grow very dense, in more than one single layer after six days. Therefore, routine analysis of lineage-specific markers is more easily performed by RT-qPCR, ChIP or western blot. A big advantage for the biochemical analysis of the cultures is the high yield of cells which can be achieved by this differentiation protocol from a small starting population of hESC. One drawback of this protocol is the high cost of the medium supplements (e.g., noggin) required to force the homogeneous neural differentiation. Another drawback for some applications may be that some small molecules (kinase inhibitors) need to be present in the culture medium as part of the protocol. Thus, certain signal pathways cannot be examined toxicologically, as the change of the culture conditions also changes the differentiation29.
The advantage of test system combination is the better understanding of DNT. Whereas UKK covers a broader range and adverse effect on early germ layer formation can be investigated, UKN1 allows to investigate more neural-specific mechanisms such as epigenetics. Although the two culture systems presented here have been shown to predict developmental neurotoxicity for few model toxicants16, there is still a need for higher throughput versions of the protocols that allow screening of a large number of potential developmental neurotoxicants. Moreover, more work is required to identify and validate common markers of toxicity at the mRNA or protein level, and to establish them as a part of preclinical drug safety evaluation.
More than 20 billion US dollars per year are invested by the pharmaceutical industries for drug discovery39. As a proof of concept, we have developed in vitro toxicity test systems based on hESC and transcriptomics that may be suitable to predict human relevant toxicity effects of potential drug compounds in a cost-effective and less-time consuming manner.
The authors have nothing to disclose.
We thank M. Kapitza, Margit Henry, Tamara Rotshteyn, Susan Rohani and Cornelia Böttinger for excellent technical support. This work was supported by grants from the German Research Foundation (RTG 1331) and the German Ministry for Research (BMBF).
DMEM/F-12 | Life Technologies | 11320082 | Dulbecco's Modified Eagle Medium:Nutrient Mixture F-12 |
KOSR | Life Technologies | 10828028 | Knockout Serum Replacement |
GlutaMAX | Life Technologies | 35050061 | GlutaMAX supplement |
NEAA | Life Technologies | 11140050 | MEM Nonessential Amino Acids Solution |
DPBS | Life Technologies | 14190-0144 | Dulbecco's Phosphate-Buffered Saline, without calcium, without magnesium |
mTeSR medium | Stemcell Technologies | 5850 | |
Pluronic F-127 | Sigma | P2443-250G | |
V bottom plate | VWR | 734-0483 | Plate,Microwell,V BTTM,96 Well,Sterile 1 * 50 ST |
Vbottom plate lid | VWR | 634-0011 | Lid, Microtitre plates, Cond. Ring 1 * 50 ST |
Pen/Strep | Life Technologies | 15140-122 | Penicillin- Streptomycin, Liquid |
Distilled Water | Life Technologies | 15230-089. | Sterile Distilled Water |
Human FGF-2 (bFGF) | Millipore | GF003AF-100UG | Fibroblast Growth Factor basic, human recombinant, animal-free |
Filter 0.22 μm | Millipore | SCGPU02RE | Stericup-GP, 0.22 μm, polyethersulfone, 250 ml, radio- sterilized |
StemPro EZPassageTM Disposablte | Invitrogen | 23181010 | |
BD MatrigelTM, hESC qualified Matrix | Stemcell Technologies | 354277 | 5 ml vial |
DMSO | Sigma | D-2650 | |
RNAlater Stabilization Solution | Life Technologies | AM7020 | It stabilizes and protect the RNA integrity in unfrozen samples. |
70 μm Cell Strainer | Becton Dickinson | 352350 | Cell strainer with 70 μm Nylon mesh |
35 μm Lid cell strainer, 5 ml tube | Becton Dickinson | 352235 | 5 ml polystyrene round bottom test tube, with a cell strainer cap (35 μm) |
50 ml sterile Polypropylene tube | Greiner Bio-One | 227261 | 50 ml Polypropylene tube with conical bottom, Sterile |
T75 flask | Greiner Bio-One | 658175 | CELLSTAR Filter Cap Cell Culture 75 cm2 Flasks |
TRIzol | Life Technologies | 10296010 | |
96 well optical bottom plates | Thermo Scientific | 165305 | |
CellTiter-Blue | Promega | G8081 | |
Accutase | PAA | L11-007 | |
Apotransferin | Sigma-Aldrich | T-2036 | |
Dispase | Worthington Biochemicals | LS002104 | |
Dorsomorphin | Tocris Bioscience | 3093 | |
EDTA | Roth | 8043.2 | |
FBS | PAA | A15-101 | |
FGF-2 | R&D Systems | 233-FB | |
Gelatine | Sigma-Aldrich | G1890-100G | |
Glucose | Sigma-Aldrich | G7021-100G | |
GlutaMAX | Gibco Invitrogen | 35050-038 | |
HEPES | Gibco Invitrogen | 15630-056 | |
Insulin | Sigma-Aldrich | I-6634 | |
Knockout DMEM | Gibco Invitrogen | 10829-018 | |
Matrigel | BD Biosciences | 354234 | |
Noggin | R&D Systems | 719-NG | |
PBS | Biochrom AG | L1825 | |
Progesteron | Sigma-Aldrich | P7556 | |
Putrescine | Sigma-Aldrich | P-5780 | |
ROCK inhibitor Y-27632 | Tocris Biosciences | 1254 | |
SB431542 | Tocris Biosciences | 1614 | |
SDS | Bio-Rad | 161-0416 | |
Selenium | Sigma-Aldrich | S-5261 | |
β-Mercaptoethanol | Gibco Invitrogen | 31350-010 | |
List of Kits | |||
RNeasy Mini Kit (250) | QIAGEN | 74106 | |
GeneChip Hybridization, Wash, and Stain Kit | Affymetrix | 900721, 22, 23 | This kit provides all reagents required for hybridization wash and staining of microarrays. |
Rnase-Free DNase Set | QIAGEN | 79254 | |
List of equipment. | |||
Inverted microscope | Olympus | IX71 | |
Genechip Hybridisation Oven – 645 | Affymetrix | ||
Genechip Fluidics Station-450 | Affymetrix | ||
Affymetrix Gene-Chip Scanner-3000-7 G | Affymetrix | ||
Spectramax M5 | Molecular Devices | ||
List of softwares | |||
Prism 4 | |||
Affymetrix GCOS | |||
Partek Genomic Suite 6.25 | |||
Online tools for Functional annotation DAVID Onto-tools Intelligent Systems and Bioinformatics Laboratory |