Although researchers are generally knowledgeable about procedures and safety precautions required for biosafety level 1 or 2 (BSL-1/2) experiments, they may not be familiar with experimental procedures in BSL-4 suit laboratories. This article provides a detailed visual demonstration of BSL-4 suit laboratory systems check, laboratory entry, movement, and exit procedures.
Biosafety level 4 (BSL-4) suit laboratories are specifically designed to study high-consequence pathogens for which neither infection prophylaxes nor treatment options exist. The hallmarks of these laboratories are: custom-designed airtight doors, dedicated supply and exhaust airflow systems, a negative-pressure environment, and mandatory use of positive-pressure (“space”) suits. The risk for laboratory specialists working with highly pathogenic agents is minimized through rigorous training and adherence to stringent safety protocols and standard operating procedures. Researchers perform the majority of their work in BSL-2 laboratories and switch to BSL-4 suit laboratories when work with a high-consequence pathogen is required. Collaborators and scientists considering BSL-4 projects should be aware of the challenges associated with BSL-4 research both in terms of experimental technical limitations in BSL-4 laboratory space and the increased duration of such experiments. Tasks such as entering and exiting the BSL-4 suit laboratories are considerably more complex and time-consuming compared to BSL-2 and BSL-3 laboratories. The focus of this particular article is to address basic biosafety concerns and describe the entrance and exit procedures for the BSL-4 laboratory at the NIH/NIAID Integrated Research Facility at Fort Detrick. Such procedures include checking external systems that support the BSL-4 laboratory, and inspecting and donning positive-pressure suits, entering the laboratory, moving through air pressure-resistant doors, and connecting to air-supply hoses. We will also discuss moving within and exiting the BSL-4 suit laboratories, including using the chemical shower and removing and storing positive-pressure suits.
Scientific interest in exotic, high-consequence pathogens has steadily increased in recent years. Of particular interest are pathogens considered emerging or re-emerging agents that are potential bioweapons. In terms of research priority and risk, these pathogens are classified by the Centers for Disease Control and Prevention (CDC) as Bioterrorism Category A-C Agents 1. In addition, high-consequence pathogens are classified as Select Agents [and Toxins] in regard to import, export, and access regulations. In the US, the biosafety rules and procedures that must be followed for work with special pathogens that require BSL-2, BSL-3, or BSL-4 containment are outlined in Biosafety in Microbiological and Biomedical Laboratories (BMBL) 2. Pathogens that are perceived to present the most significant health risk to humans and/or animals are considered BSL-4 pathogens. Consequently, BSL-4 research requires particular caution, highly specialized training, and a robust and redundant facility infrastructure 3. To improve general awareness of the challenges associated with BSL-4 research, understanding the requirements for high containment building operations, systems management, and routine validation testing of engineering controls is necessary. We aim to advance this understanding by visually presenting the increased standards of operation and biosafety, and the resulting increased difficulty of hands-on research in BSL-4 containment.
Facilities housing BSL-4 suit laboratories must meet stringent requirements including, but not limited to, dedicated nonrecirculating ventilation systems, rigorous waste handling system and processes 4,5, and building automation systems (BAS) 2,6,7. Laboratory supply air is filtered once and exhaust air is double-filtered through high efficiency particle air (HEPA) filters, which are recertified annually. In addition, the BMBL imposes strict requirements for decontamination of solid waste and collection and decontamination of all effluent materials before release into the general waste system. Multiple redundancies are built into the system to prevent release of any type of BSL-4 pathogen. The BAS monitor facility operations remotely and can pinpoint the problem area. Facility support systems are checked daily by staff for optimal operation and notification of problems in real time. All systems are tested on a recurring basis to comply with CDC/Division of Select Agents and Toxins requirements for facility operation.
In addition to these standards for the physical facility, laboratory staff working with Select Agents and Toxins must submit to a Security Risk Assessment (SRA) by the Department of Justice prior to working with or around Select Agents. In addition, staff working with Tier 1 Select Agents (e.g., Ebola virus, Bacillus anthracis) must be enrolled in a Personnel Reliability Program (PRP) that continually evaluates the physical and mental health of individual researchers 8. The health screenings assess whether individuals are physically capable of performing the work in BSL-4 containment in a safe manner. Mental health screenings assess general well-being, psychological welfare and resiliency, and safety awareness of the staff. At the NIAID, scientists working with Select Agents undergo additional scrutiny wherein each individual completes an Access National Agency Check and Inquiries (ANACI) background check that examines educational and professional credentials, criminal history, financial history, and risk of foreign influence.
Compared to BSL-2 laboratory entry, maximum containment entry requires a considerably greater investment of resources, time, and training. After SRA approval and registration with the Division of Select Agents and Toxins, staff must undergo stringent hands-on training before access to the BSL-4 suit laboratories. Laboratory staff receives training on operation of the facility, including daily checks of critical functions and entry/exit procedures 9. Staff is also trained on laboratory biosafety and care and use of positive-pressure suits. White suits made of polyester fabric with polyvinyl chloride coating are used at the NIH/NIAID Integrated Research Facility at Fort Detrick. Facilities that use other types/commercial brands of positive-pressure suits may require different operational procedures for entering and exiting the BSL-4 laboratory than those outlined here. Researchers in facilities using this article should account for these differences prior to training. Suit training at the NIH/NIAID Integrated Research Facility at Fort Detrick includes proper procedures for donning the suit, ensuring the suit is functioning properly, repairing and maintaining suits (within and outside the laboratory), and moving within the laboratory. Once this training is complete, the laboratory staff member can begin working within the BSL-4 suit laboratories. Initially, another experienced staff member mentors one-on-one the newly trained staff member during the first five visits to the BSL-4 suit laboratories. To work independently at the NIH/NIAID Integrated Research Facility at Fort Detrick, the newly trained staff member completes a minimum of 40 supervised visits into BSL-4 suit laboratories with at least 100 hr of practical working time inside the laboratories.
1. Daily External Checklist
2. Laboratory Entry Procedures
3. Movement within the BSL-4 Suit Laboratories
4. Laboratory Exit Procedures from BSL-4 Suit Laboratories
5. BSL-4 Chemical Shower Procedures
6. Suit Room Procedures after Exiting the Chemical Shower
7. Personal Shower and Outer Change Room Exit Procedures
Staff has been carefully and thoroughly trained in these techniques to ensure safe and consistent practices inside a BSL-4 facility. By checking that the facility is functioning properly, as indicated on the daily checklist (Figure 1), we are able to ensure that all of the necessary administrative and engineering controls are in place and functioning to maintain a safe and properly functioning environment. The positive-pressure suit provides an additional layer of protection for the staff member. Proper maintenance and use of these suits is integral to personal protection for the staff member. Through strict adherence to these procedures, no laboratory-acquired infections have been recorded at the NIH/NIAID Integrated Research Facility at Fort Detrick.
Figure 1: Daily visual checklist for the support and backup systems for the BSL-4. Please click here to view a larger version of this figure.
We outlined the BSL-4 entrance and exit procedures used at the NIH/NIAID Integrated Research Facility at Fort Detrick for working with highly hazardous (Risk Group 4) pathogens. One purpose of visualizing the BSL-4 entrance and exit procedures is to emphasize the importance of safety of laboratory staff during work with such pathogens to avoid laboratory-acquired infections. Negative-pressure, BSL-4 laboratories maintain an inward directional airflow to ensure that pathogens will be contained within the laboratory. Positive-pressure suits with dedicated breathing air systems worn by laboratory staff mitigate contact of airborne pathogens with the laboratory staff. After laboratory staff leave the BSL-4 laboratory, a chemical shower disinfects the surface of the potentially contaminated suit and therefore prevents potential contamination of the rest of the building and the person changing out of the suit.
As the integrity of the positive-pressure suit is one of several important primary barriers for preventing potential pathogen exposure, staff is required to check for suit leaks before entrance and after exiting from BSL-4 laboratories. If a leak occurs, staff identifies the location of the leaks and alerts facility management. These practices ensure a swift response to any exposure to high consequence pathogens. Although every effort is taken to eliminate risk to laboratory staff, breaches of the suit may occur through the use of glassware, sharps, animal aggression, or continuous use.
While the procedures presented here generally follow the BMBL specifications outlined by CDC 2, these procedures are specific to the IRF-Frederick. Each BSL-4 facility has different building design specifications that impact the exact methods of laboratory operation. Alternative procedures for entering and exiting BSL-4 laboratories depend in part on the design and operation of these laboratories. In addition, government regulations in different countries may also have an effect on BSL-4 laboratory procedures in each country. Nevertheless, a general understanding of BSL-4 procedures and the building monitoring systems that support the safety of laboratory staff will help health administrators who are contemplating the design of similar buildings and outside collaborators involved in studies of high risk pathogens.
Productivity will increase as more laboratory staff is trained in BSL-4 laboratory entrance and exit procedures and in conducting experiments under BSL-4 conditions. However, when designing protocols with outside collaborators, sufficient time should be allotted to perform even basic laboratory operations, and expectations of time frames for delivering results have to be adjusted by accepting the difficulties inherent with work in BSL-4 laboratories. A generalized assumption is that any experiment performed at BSL-2 (e.g., 2 hr) will require twice the amount of time to perform in BSL-4 (e.g., 4 hr).
The authors have nothing to disclose.
The content of this publication does not necessarily reflect the views or policies of the US Department of Health and Human Services or of the institutions and companies affiliated with the authors. KJ, MRH, and LB performed this work as employees of Battelle Government Services, Inc.; JHK as an employee of Tunnell Government Services, Inc.; and MGL as an employee of Lovelace Respiratory Research Institute, Inc. Tunnell Government Services and Lovelace Respiratory Research Institute are subcontractors of Battelle Memorial Institute under its prime contract with NIAID, under Contract No. HHSN272200700016I.
Name | Company | Catalog Number | Comments |
Micro-Chem Plus | National Chemical Laboratories | 255 | |
Windex | Grainger | 3U560 | |
Sperian aluminum pressure test cap | Honeywell Sperian | CC0199649 | |
Sperian suit repair kit | Honeywell Sperian | CC0199621 | |
Sperian Protection Suit Integrity Test Log | NA | NA | Created by individual lab |
Sperian positive pressure suit | Honeywell Safety Products | BSL 4-2 | |
Soapy water | NA | NA | Created by individual lab |
Outer suit gloves (canners) | Fisher | 19-019-601 | |
Outer suit gloves (MAPA) | Fisher | 2MYU1 | |
Inner nitrile suit gloves | Fisher | 19-050-592 | |
Zip Lube | Amazon | B000GKBEJA | |
Scrubs | Cintas | 60975/60976 | |
Socks | Cintas | 944 | |
Duct Tape | Pack-N-Tape | 51131069695 | |
Towels | Cintas | 2720 | |
O-rings | O-ring warehouse | AS568-343 | |
Overshoes | Amazon | B0034KZE22 | |
Plastic dunk tanks | Fisher | 14-831-113 | |
Entry and exit logbook | NA | NA | Created by individual lab |
Baby powder | Amazon | 44230 | |
Ethanol | Fisher | BP2818500 |