A protocol is described that uses anoxia/starvation in C. elegans to model ischemia/reperfusion. Functional outcomes include increased mortality, visible abnormalities in GFP-labeled neuronal processes, and impaired behavioral responses that require neuronal function.
Protocols for anoxia/starvation in the genetic model organism C. elegans simulate ischemia/reperfusion. Worms are separated from bacterial food and placed under anoxia for 20 hr (simulated ischemia), and subsequently moved to a normal atmosphere with food (simulated reperfusion). This experimental paradigm results in increased death and neuronal damage, and techniques are presented to assess organism viability, alterations to the morphology of touch neuron processes, as well as touch sensitivity, which represents the behavioral output of neuronal function. Finally, a method for constructing hypoxic incubators using common kitchen storage containers is described. The addition of a mass flow control unit allows for alterations to be made to the gas mixture in the custom incubators, and a circulating water bath allows for both temperature control and makes it easy to identify leaks. This method provides a low cost alternative to commercially available units.
C. elegans is a nematode that has been widely adopted as a multicellular eukaryotic model organism since its introduction by Brenner1. It is a cheap, simple, and versatile model, which allows easy links between genetic alterations and phenotypic changes2.
Ischemia is characterized by a lack of nutrients and oxygen supply to a tissue, followed by reperfusion, when a burst of reactive oxygen species is produced3 and most of the damage occurs. In 2002, a model of ischemia/reperfusion (IR) in C. elegans was developed4 involving submitting the whole worm to anoxia, nutrient deprivation and heat stress for approximately 20 hr followed by 24 hr under normal conditions. Although this model is technically an anoxia-starvation (AS) condition, cell death occurs through mechanisms that are conserved in mammals, including damage induced by oxidants during reperfusion5. Furthermore, similar to mammalian IR, damage induced by AS in C. elegans can be prevented by ischemic preconditioning6,7 or anesthetic preconditioning8,9.
The protocols below demonstrate how to mimic IR in C. elegans using the AS model, how to score morphological and behavioral abnormalities that result from AS, and how to adapt the protocol in a way that allows the experiment to be conducted with a lower initial investment using a custom-made, easily-constructed chamber alternative.
1. C. elegans Growth
2. Materials for AS
3. Anoxia/Starvation
4. Simulated Reperfusion
5. Identifying Dead Versus Live Worms
6. Touch Response Assay
7. Neuronal Modifications
8. Lab-made Hypoxic Chamber
Subjecting C. elegans to 20 hr of AS at 26 °C in a custom lab-made incubation chamber as described (Section 3.6.2) resulted in significant mortality (Figure 1A)5. Subsequent fluorescent imaging of punctum and breaks in the GFP labeled neuronal processes of survivors confirmed the presence of morphological abnormalities (Figure 2). The survivors also responded poorly to light body wall touch (Figure 1B). This model has been used by multiple groups to study how genetic predisposition, pharmaceutical intervention, and metabolic plasticity affects AS dependent outcomes4-6,8,9,12,13.
Figure 1. C. elegans survival and touch response after AS. A) Percentage of worms that exhibit 24 hr post-AS survival. The N2 strain is the wild type genetic background, and KWN85 contains an integrated transgene that labels mec neurons with GFP. B) Response to touch stimuli of living C. elegans (N2 Strain) after AS. Please click here to view a larger version of this figure.
Figure 2. Touch neuron modifications after AS. Touch neuron (PLML and PLMR) abnormalities such as tortuous processes and breaks (A) or the accumulation of GFP aggregates in the processes (B) were monitored in surviving anesthetized C. elegans after AS.
Figure 3. Eyelash pick. An assembled eyelash pick. In the inset, a detail of the eyelash glued to the toothpick wood.
Figure 4. Lab-made hypoxic chamber inside the water bath. A closed container ready to start the experiment. Arrows indicate the gas entrance and exit and the bottle weight used to keep it from floating.
Figure 5. Details of the internal and external side of the container lid. A) External side of the container lid, indicating the tube and its connector attached to the previously made hole. B) External side of the container lid, indicating the tube connector attached to the previously made hole.
AS has been widely used in C. elegans to model IR injury. Some key points should be highlighted for this protocol: C. elegans are resistant to a wide array of injuries, justifying the need for 3 concomitant insults (heat, starvation and anoxia) to achieve death using this system. Anoxia alone does not kill the worms in this window of time14. Furthermore, temperature increase is an additional stress, so it is important to monitor closely. Strictly speaking, starvation does not contribute significantly to the degree of mortality observed7, per se, but it appears to reduce variability among experimental replicates. Given that there can be significant variability from day-to-day, it is extremely important to compare samples run directly in parallel, and to repeat experiments over multiple days. In general, outcomes are measured for three separate plates of 50-100 worms/experimental condition and these are then averaged and considered as a single experimental replicate. Generally, between seven and nine replicates appear to be sufficient to achieve or rule out statistical significance.
The developmental stage of the worms used in the experiment also needs to be carefully monitored as the susceptibility of different stages to AS damage varies significantly15,16. The use of young adults is standard, and larval stage (L3 and L4) worms appear to be more resistant to the damaging effects of AS (unpublished data).
This protocol presents two ways to perform the experiments, one using a lab-made apparatus (using Tupperware-type containers and gas input11) and other using a commercial hypoxic chamber4,6. Anoxia can be achieved by other means that consume the oxygen, as described elsewhere13,17. The use of alternate techniques to create a hypoxic environment may change the AS incubation time necessary to create the desired amount of death. Targeting ~20% survival is an ideal starting point for studying protective interventions, while 80% is similarly ideal for interventions that exacerbate the detrimental effects of AS. Another important caveat is the time at which the observer scores dead/alive worms. If the time for analysis is extended beyond 24 hr, the data may be misleading since dead worms become increasingly difficult to identify. This may be due to worm carcasses becoming relatively transparent over time, but also to the fact that fertilized embryos can develop into progeny post-mortem inside of the carcasses and disrupt them as they emerge.
The analysis of neuronal morphology can be modified to look at protein expression patterns18, nuclear fragmentation4 and other parameters19 by substituting a worm strain that expresses the appropriate genetically encoded marker. One final caveat is that the visualization of the neuronal processes should be done less than 30 min after placing the worms on the slide. Animals kept under anesthesia on slides for longer periods can exhibit AS-independent damage. Adjust the amount of animals per slide according to the time needed to track and analyze them.
The authors have nothing to disclose.
Figures 1 and 2 were previously published in Free Radical Biology & Medicine (Queliconi et al.5) and have copyright held by Elsevier. This work was supported by the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), the Instituto Nacional de Ciência e Tecnologia de Processos Redox em Biomedicina, the Núcleo de Apoio à Pesquisa de Processos Redox em Biomedicina, USPHS NS064945 (K.N.), and USPHS GM087483 (K.N.). B.B.Q. is a doctoral student supported by a FAPESP fellowship.
N2 strain | CGC (http://www.cbs.umn.edu/CGC/) | Wild type strain | |
TU2583 uIs25 (Pmec-18::GFP) | CGC (http://www.cbs.umn.edu/CGC/) | TU2583 | integrated fluorescent transgene used to label touch neurons |
CB1338 mec-3 (e1338)IV | CGC (http://www.cbs.umn.edu/CGC/) | CB1338 | canonical mec-3 mutant that is touch insensitive |
Microcentrifuge Tube | Eppendorf | 0030 120.086 | |
Nikon Eclipse TE2000-U Microscope | Nikon USA | TE2000-U | |
Low Temperature Incubator | Sheldon Manufacturing Inc. | Model 2005 | |
Eyelash Pick | An eyelash pick can be prepared by attaching an eyelash onto a wooden toothpick, then attaching the toothpick in a glass Pasteur pipette (Figure 3) | ||
Hypoxic Chamber | Coy | 8307030 | Hypoxic Glove box equipped with paladium catalyst and CO2 controller. |